Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    A Novel Binary Emperor Penguin Optimizer for Feature Selection Tasks

    Minakshi Kalra1, Vijay Kumar2, Manjit Kaur3, Sahar Ahmed Idris4, Şaban Öztürk5, Hammam Alshazly6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6239-6255, 2022, DOI:10.32604/cmc.2022.020682 - 11 October 2021

    Abstract Nowadays, due to the increase in information resources, the number of parameters and complexity of feature vectors increases. Optimization methods offer more practical solutions instead of exact solutions for the solution of this problem. The Emperor Penguin Optimizer (EPO) is one of the highest performing meta-heuristic algorithms of recent times that imposed the gathering behavior of emperor penguins. It shows the superiority of its performance over a wide range of optimization problems thanks to its equal chance to each penguin and its fast convergence features. Although traditional EPO overcomes the optimization problems in continuous search… More >

  • Open Access

    ARTICLE

    Electrochemical Performance of Starch-Polyaniline Nanocomposites Synthesized By Sonochemical Process Intensification

    Narsimha Pandi1, Shirish H. Sonawane1,*, Sarang P. Gumfekar2, Anand Kishore Kola1, Pramod H. Borse3, Swapnil B. Ambade4, Sripadh Guptha1, Muthupandian Ashokkumar5

    Journal of Renewable Materials, Vol.7, No.12, pp. 1279-1293, 2019, DOI:10.32604/jrm.2019.07609

    Abstract The present study deals with the intensified synthesis of starchpolyaniline (starch-PANI) nanocomposite using an ultrasound-assisted method. Starch is a key component in this nanocomposite, which acts as a backbone of the nucleation of PANI. The Electrochemical property of the nanocomposite arises due to the addition of PANI. This is one of green approach for the synthesis of bio nanocomposite using ultrasound. The crystallinity of the composite is evaluated using the Scherrer Formula. The starch-PANI nanocomposite was characterized by XRD, FT-IR, Raman, XPS and TEM. The composite nanoparticles show spherical morphology. The elemental composition of starch-PANI More >

  • Open Access

    ARTICLE

    HEAT EXCHANGES INTENSIFICATION THROUGH A FLAT PLAT SOLAR COLLECTOR BY USING NANOFLUIDS AS WORKING FLUID

    A. Maouassia,b,*, A. Baghidjaa,b, S. Douadc , N. Zeraibic

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.35

    Abstract This paper illustrates how practical application of nanofluids as working fluid to enhance solar flat plate collector efficiency. A numerical investigation of laminar convective heat transfer flow throw a solar collector is conducted, by using CuO-water nanofluids. The effectiveness of these nanofluids is compared to conventional working fluid (water), wherein Reynolds number and nanoparticle volume concentration in the ranges of 25– 900 and 0–10 % respectively. The effects of Reynolds number and nanoparticles concentration on the skin-friction and heat transfer coefficients are presented and discussed later in this paper. Results show that the heat transfer More >

  • Open Access

    ARTICLE

    HEAT TRANSFER INTENSIFICATION IN A 3D CAVITY USING HYBRID CNT-AL2O3 (15-85%) NANOFLUID

    Mohammed A. Tashkandia , Abdelkarim Aydib,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.27

    Abstract In this work, a computational study of convective heat transfer in a hybrid CNT-Al2O3/water nanofluid cavity filled. The main considered parameters are the Rayleigh number and nanoparticles volume fraction. Results are presented in terms of flow structure, temperature field, and average Nusselt number. Since CNT and Al2O3 have different shapes to models are used to evaluate the effective thermal conductivity. It was found that both increasing Rayleigh number and nanoparticles volume fraction increase the heat transfer intensify the flow and affect the temperature field. Adding nanoparticles enhances the heat transfer due to the enhancement of the More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF THE INTENSIFICATION OF HEAT TRANSFER BY POOL BOILING LN2: APPLICATION TO COOLING OF A BRASS RIBBON IN HORIZONTAL POSITION

    A. Zoubira , R. Agounouna,*, I. Kadirib, K. Sbaia , M. Rahmounea

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.35

    Abstract Boiling heat transfer process is important because it is a way to increase the flux density transmitted at low temperature differences. To quantify the thermal exchanges, we performed an experimental study of the nitrogen pool boiling, in transient conditions, on a horizontal brass ribbon for a fixed flux density. The results show that there is no break between the monophasic convection zone and the nucleated boiling region. In the nucleated boiling zone, the temperature variations are very small. We also note that the overheating required to trigger boiling increases with the time delay after the More >

  • Open Access

    ARTICLE

    FLOW SEPARATION IN FALLING LIQUID FILMS

    Georg F. Dietze, Reinhold Kneer

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-14, 2011, DOI:10.5098/hmt.v2.3.3001

    Abstract Despite the use of liquid films in a wide variety of technical applications involving heat and mass transfer (e.g. nuclear reactors, cooling towers and gas turbines), where they often play an important role, the underlying momentum and heat transport processes within these thin liquid layers remain to be fully elucidated. In particular, this applies to the influence that surface waves, developing due to the film’s natural instability, exert on the mentioned processes. In this context, it has been suggested by several experimental and numerical observations that momentum and heat transfer in the capillary wave region… More >

Displaying 1-10 on page 1 of 6. Per Page