Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    On Soft Pre-Rough Approximation Space with Applications in Decision Making

    M. El Sayed1,*, Wadia Faid Hassan Al-shameri1, M. A. El Safty2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 865-879, 2022, DOI:10.32604/cmes.2022.020066 - 27 June 2022

    Abstract A soft, rough set model is a distinctive mathematical model that can be used to relate a variety of real-life data. In the present work, we introduce new concepts of rough set based on soft pre-lower and soft pre-upper approximation space. These concepts are soft pre-rough equality, soft pre-rough inclusion, soft pre-rough belonging, soft predefinability, soft pre-internal lower, and soft pre-external lower. We study the properties of these concepts. Finally, we use the soft pre-rough approximation to illustrate the importance of our method in decision-making for Chikungunya medical illnesses. In reality, the impact factors of More >

  • Open Access

    ARTICLE

    Decision Making on Fuzzy Soft Simply* Continuous of Fuzzy Soft Multi-Function

    M. A. El Safty1,*, Samirah Al Zahrani1, Ansari Saleh Ahmar2, M. El Sayed3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 881-894, 2022, DOI:10.32604/csse.2022.019549 - 24 September 2021

    Abstract Real world applications are dealing now with a huge amount of data, especially in the area of high dimensional features. In this article, we depict the simply*upper, the simply*lower continuous, we get several characteristics and other properties with respect to upper and lower simply*-continuous soft multi-functions. We also investigate the relationship between soft-continuous, simply*continuous multifunction. We also implement fuzzy soft multifunction between fuzzy soft topological spaces which is Akdag’s generation of the notion. We are introducing a new class of soft open sets, namely soft simply*open set deduce from soft topology, and we are using More >

  • Open Access

    ARTICLE

    Soft -Rough Set and Its Applications in Decision Making of Coronavirus

    M. A. El Safty1,*, Samirah Al Zahrani1, M. K. El-Bably2, M. El Sayed3

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 267-285, 2022, DOI:10.32604/cmc.2022.019345 - 07 September 2021

    Abstract In this paper, we present a proposed method for generating a soft rough approximation as a modification and generalization of Zhaowen et al. approach. Comparisons were obtained between our approach and the previous study and also. Eventually, an application on Coronavirus (COVID-19) has been presented, illustrated using our proposed concept, and some influencing results for symptoms of Coronavirus patients have been deduced. Moreover, following these concepts, we construct an algorithm and apply it to a decision-making problem to demonstrate the applicability of our proposed approach. Finally, a proposed approach that competes with others has been More >

  • Open Access

    ARTICLE

    Decision Making Based on Fuzzy Soft Sets and Its Application in COVID-19

    S. A. Al blowi1, M. El Sayed2, M. A. El Safty3,*

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 961-972, 2021, DOI:10.32604/iasc.2021.018242 - 20 August 2021

    Abstract Real-world applications are now dealing with a huge amount of data, especially in the area of high-dimensional features. Trait reduction is one of the major steps in decision making problems. It refers to the determination of a minimum subset of attributes which preserves the final decision based on the entire set of attributes. Unfortunately, most of the current features are irrelevant or redundant, which makes these systems unreliable and imprecise. This paper proposes a new paradigm based on fuzzy soft relationship and level fuzzy soft relationship, called Union - Intersection decision making method. Using these More >

Displaying 1-10 on page 1 of 4. Per Page