Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process

    Bo Zhu1,#, Enzhi Dong1,#, Zhonghua Cheng1,*, Xianbiao Zhan2, Kexin Jiang1, Rongcai Wang 3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.069194 - 10 November 2025

    Abstract With the increasing complexity of industrial automation, planetary gearboxes play a vital role in large-scale equipment transmission systems, directly impacting operational efficiency and safety. Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment, leading to excessive maintenance costs or potential failure risks. However, existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes. To address these challenges, this study proposes a novel condition-based maintenance framework for planetary gearboxes. A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals, which were then processed using a… More >

  • Open Access

    ARTICLE

    When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation

    Noreen Fuentes1, Janeth Ugang1, Narcisan Galamiton1, Suzette Bacus1, Samantha Shane Evangelista2, Fatima Maturan2, Lanndon Ocampo2,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068104 - 10 November 2025

    Abstract This study demonstrates a novel integration of large language models, machine learning, and multi-criteria decision-making to investigate self-moderation in small online communities, a topic under-explored compared to user behavior and platform-driven moderation on social media. The proposed methodological framework (1) utilizes large language models for social media post analysis and categorization, (2) employs k-means clustering for content characterization, and (3) incorporates the TODIM (Tomada de Decisão Interativa Multicritério) method to determine moderation strategies based on expert judgments. In general, the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation… More >

  • Open Access

    ARTICLE

    Integrated Approach of Brain Disorder Analysis by Using Deep Learning Based on DNA Sequence

    Ahmed Zohair Ibrahim1,*, P. Prakash2, V. Sakthivel2, P. Prabu3

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2447-2460, 2023, DOI:10.32604/csse.2023.030134 - 21 December 2022

    Abstract In order to research brain problems using MRI, PET, and CT neuroimaging, a correct understanding of brainfunction is required. This has been considered in earlier times with the support of traditional algorithms. Deep learning process has also been widely considered in these genomics data processing system. In this research, brain disorder illness incliding Alzheimer’s disease, Schizophrenia and Parkinson’s diseaseis is analyzed owing to misdetection of disorders in neuroimaging data examined by means fo traditional methods. Moeover, deep learning approach is incorporated here for classification purpose of brain disorder with the aid of Deep Belief Networks More >

  • Open Access

    ARTICLE

    An Advanced Integrated Approach in Mobile Forensic Investigation

    G. Maria Jones1,*, S. Godfrey Winster2, P. Valarmathie3

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 87-102, 2022, DOI:10.32604/iasc.2022.022972 - 05 January 2022

    Abstract Rapid advancement of digital technology has encouraged its use in all aspects of life, including the workplace, education, and leisure. As technology advances, so does the number of users, which leads to an increase in criminal activity and demand for a cyber-crime investigation. Mobile phones have been the epicenter of illegal activity in recent years. Sensitive information is transferred due to numerous technical applications available at one’s fingertips, which play an essential part in cyber-crime attacks in the mobile environment. Mobile forensic is a technique of recovering or retrieving digital evidence from mobile devices so… More >

  • Open Access

    ARTICLE

    Integrated Approach to Detect Cyberbullying Text: Mobile Device Forensics Data

    G. Maria Jones1,*, S. Godfrey Winster2, P. Valarmathie3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 963-978, 2022, DOI:10.32604/csse.2022.019483 - 24 September 2021

    Abstract Mobile devices and social networks provide communication opportunities among the young generation, which increases vulnerability and cybercrimes activities. A recent survey reports that cyberbullying and cyberstalking constitute a developing issue among youngsters. This paper focuses on cyberbullying detection in mobile phone text by retrieving with the help of an oxygen forensics toolkit. We describe the data collection using forensics technique and a corpus of suspicious activities like cyberbullying annotation from mobile phones and carry out a sequence of binary classification experiments to determine cyberbullying detection. We use forensics techniques, Machine Learning (ML), and Deep Learning More >

  • Open Access

    ARTICLE

    A Dynamic Adaptive Firefly Algorithm for Flexible Job Shop Scheduling

    K. Gayathri Devi*, R. S. Mishra, A. K. Madan

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 429-448, 2022, DOI:10.32604/iasc.2022.019330 - 03 September 2021

    Abstract An NP-hard problem like Flexible Job Shop Scheduling (FJSP) tends to be more complex and requires more computational effort to optimize the objectives with contradictory measures. This paper aims to address the FJSP problem with combined and contradictory objectives, like minimization of make-span, maximum workload, and total workload. This paper proposes ‘Hybrid Adaptive Firefly Algorithm’ (HAdFA), a new enhanced version of the classic Firefly Algorithm (FA) embedded with adaptive parameters to optimize the multi objectives concurrently. The proposed algorithm has adopted two adaptive strategies, i.e., an adaptive randomization parameter (α) and an effective heterogeneous update More >

Displaying 1-10 on page 1 of 6. Per Page