Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem

    Zakir Hussain Ahmed1,*, Habibollah Haron2, Abdullah Al-Tameem3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2399-2425, 2024, DOI:10.32604/cmc.2024.049704 - 15 May 2024

    Abstract Genetic algorithms (GAs) are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems. A simple GA begins with a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes. It uses a crossover operator to create better offspring chromosomes and thus, converges the population. Also, it uses a mutation operator to explore the unexplored areas by the crossover operator, and thus, diversifies the GA search space. A combination of crossover and mutation operators… More >

Displaying 1-10 on page 1 of 1. Per Page