Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Numerical Analysis of Perforation during Hydraulic Fracture Initiation Based on Continuous–Discontinuous Element Method

    Rui Zhang1, Lixiang Wang2,*, Jing Li1,4, Chun Feng2, Yiming Zhang1,3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2103-2129, 2024, DOI:10.32604/cmes.2024.049885 - 20 May 2024

    Abstract Perforation is a pivotal technique employed to establish main flow channels within the reservoir formation at the outset of hydraulic fracturing operations. Optimizing perforation designs is critical for augmenting the efficacy of hydraulic fracturing and boosting oil or gas production. In this study, we employ a hybrid finite-discrete element method, known as the continuous–discontinuous element method (CDEM), to simulate the initiation of post-perforation hydraulic fractures and to derive enhanced design parameters. The model incorporates the four most prevalent perforation geometries, as delineated in an engineering technical report. Real-world perforations deviate from the ideal cylindrical shape, More >

  • Open Access

    PROCEEDINGS

    Effects of Material Heterogeneity on the Blast-Induced Rock Crack Initiation and Propagation

    Shuyu Wang1, Linjuan Wang1,*, Yunteng Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09217

    Abstract Material heterogeneity plays an important role in the blasting induced rock fracture. However, the investigation of the effects of material heterogeneity is limited by the numerical methods for dynamic fracture. In the work, we propose a peridynamic model for brittle rock with heterogeneous micro-modulus and critical stretch to investigate the effects of material heterogeneity on the blast-induced rock crack initiation and propagation. The discretization in polar coordinates is introduced into the proposed model to avoid the fallacious directional guidance to the crack initiation around the hole. The proposed model satisfies the More >

  • Open Access

    PROCEEDINGS

    On the Fatigue Crack Initiation in Metallic Sealing Rings: From Manufacture to Service

    Pandi Zhao1, Zebang Zheng1,*, Mei Zhan1, Hongwei Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09508

    Abstract Metallic sealing rings made from nickel-based superalloys are critical components of aero engines that prevent the leakage of high-pressure liquid or gas fuel. As one of the main failure modes, fatigue cracking has been a concern for the aerospace industries because the formation of even a micro-crack may cause an aviation accident. For the purpose of manufacturing fatigue-resisting sealing rings, much effort has been spent on the lifetime predicting under fatigue loadings. However, the fatigue analysis of metallic sealing rings is challenging due to several aspects. On the one hand, the diameter of the rings… More >

  • Open Access

    ARTICLE

    Multi-Target Track Initiation in Heavy Clutter

    Li Xu1,2,*, Ruzhen Lou1, Chuanbin Zhang1, Bo Lang3, Weiyue Ding4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4489-4507, 2022, DOI:10.32604/cmc.2022.027400 - 21 April 2022

    Abstract In the heavy clutter environment, the information capacity is large, the relationships among information are complicated, and track initiation often has a high false alarm rate or missing alarm rate. Obviously, it is a difficult task to get a high-quality track initiation in the limited measurement cycles. This paper studies the multi-target track initiation in heavy clutter. At first, a relaxed logic-based clutter filter algorithm is presented. In the algorithm, the raw measurement is filtered by using the relaxed logic method. We not only design a kind of incremental and adaptive filtering gate, but also… More >

  • Open Access

    REVIEW

    Role of Reactive Oxygen Species in the Initiation of Plant Retrograde Signaling

    Eduardo-Antonio Trillo-Hernández1, Arturo Duarte Sierra2, Martín Ernesto Tiznado-Hernández1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.5, pp. 905-913, 2022, DOI:10.32604/phyton.2022.018118 - 24 January 2022

    Abstract

    The interaction between the nucleus and the different organelles is important in the physiology of the plant. Reactive oxygen species (ROS) are a by-product of the oxidation of organic molecules to obtain energy by the need to carry out the electron transfer between the different enzymatic complexes. However, they also have a role in the generation of what is known as retrograde signaling. This signal comes from the different organelles in which the oxidation of molecules or the electron transference is taking place such as mitochondria and chloroplasts. Furthermore, ROS can also induce the release

    More >

  • Open Access

    ARTICLE

    Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge

    Jinghua Wang1, Leian Zhang1, Xuemei Huang1,*, Jinfeng Zhang2, Chengwei Yuan1

    Energy Engineering, Vol.119, No.1, pp. 407-418, 2022, DOI:10.32604/EE.2022.016439 - 22 November 2021

    Abstract Transverse crack often occurs in the trailing edge region of the blade when subjected to the excessive edgewise fatigue load. In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge. The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory. The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test. Compared with More >

  • Open Access

    ARTICLE

    The Effect of Surface Pit Treatment on Fretting Fatigue Crack Initiation

    Qingming Deng1,2, Xiaochun Yin1, Magd Abdel Wahab3,4,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 659-673, 2021, DOI:10.32604/cmc.2020.012878 - 30 October 2020

    Abstract This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis. The processed specimen refers to artificially adding a cylindrical pit to its contact surface. Then, the contact radius between the pad and the specimen is controlled by adjusting the radius of the pit. The stress distribution and slip amplitude of the contact surface under different contact geometries are compared. The critical plane approach is used to predict the crack initiation life and to evaluate the effect of processed specimen on its fretting fatigue performance. Both crack More >

  • Open Access

    ARTICLE

    EIF5A2 Is Highly Expressed in Anaplastic Thyroid Carcinoma and Is Associated With Tumor Growth by Modulating TGF-β Signals

    Fengyun Hao*1, Qingli Zhu, Lingwei Lu, Shukai Sun, Yichuan Huang§, Jinna Zhang, Zhaohui Liu†#, Yuanqing Miao**, Xuelong Jiao††, Dong Chen††1

    Oncology Research, Vol.28, No.4, pp. 345-355, 2020, DOI:10.3727/096504020X15834065061807

    Abstract Anaplastic thyroid carcinoma (ATC) is resistant to standard therapies and has no effective treatment. Eukaryotic translation initiation factor 5A2 (EIF5A2) has shown to be upregulated in many malignant tumors and proposed to be a critical gene involved in tumor metastasis. In this study, we aimed to investigate the expression status of EIF5A2 in human ATC tissues and to study the role and mechanisms of EIF5A2 in ATC tumorigenesis in vitro and in vivo. Expression of EIF5A2 protein was analyzed in paraffin-embedded human ATC tissues and adjacent nontumorous tissues (ANCT) (n = 24) by immunochemistry. Expressions… More >

  • Open Access

    ARTICLE

    Aspects of Fretting Fatigue Finite Element Modelling

    Kyvia Pereira1, Libardo V. Vanegas-Useche2, Magd Abdel Wahab3, 4, *

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 97-144, 2020, DOI:10.32604/cmc.2020.09862 - 20 May 2020

    Abstract Fretting fatigue is a type of failure that may affect various mechanical components, such as bolted or dovetail joints, press-fitted shafts, couplings, and ropes. Due to its importance, many researchers have carried out experimental tests and analytical and numerical modelling, so that the phenomena that govern the failure process can be understood or appropriately modelled. Consequently, the performance of systems subjected to fretting fatigue can be predicted and improved. This paper discusses different aspects related to the finite element modelling of fretting fatigue. It presents common experimental configurations and the analytical solutions for cylindrical contact. More >

  • Open Access

    ARTICLE

    The Origin and Identity of the Calyculus in Loranthaceae: Inferred From the Floral Organogenesis of Loranthus tanakae Franch. & Sav.

    Ruozhu Lin1, Bei Cui1,2 and Wenxia Zhao1,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.3, pp. 285-293, 2019, DOI:10.32604/phyton.2019.07182

    Abstract The flowers of the hemiparasitic family Loranthaceae are always subtended by a rimmed structure known as the calyculus. The origin and identity of the calyculus have been disputed for more than a century. Various hypotheses have been proposed, for example, an outgrowth of the axis, a reduced calyx, and a bracteolar (prophyllar) origin, but controversies remain. To obtain a plausible explanation of the origin of the calyculus, we investigated the flowers of Loranthus tanakae using scanning electron microscopy and light microscopy to observe the entire developmental process of the floral parts. Our results show that… More >

Displaying 1-10 on page 1 of 22. Per Page