Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization

    Yan Wang*, You Lu, Yuqing Zhou, Zhijian Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2673-2703, 2024, DOI:10.32604/cmes.2023.046743 - 11 March 2024

    Abstract Indoor positioning is a key technology in today’s intelligent environments, and it plays a crucial role in many application areas. This paper proposed an unscented Kalman filter (UKF) based on the maximum correntropy criterion (MCC) instead of the minimum mean square error criterion (MMSE). This innovative approach is applied to the loose coupling of the Inertial Navigation System (INS) and Ultra-Wideband (UWB). By introducing the maximum correntropy criterion, the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise, thus enhancing its adaptability to diverse environmental localization requirements. Particularly in… More >

  • Open Access

    ARTICLE

    Fast Compass Alignment for Strapdown Inertial Navigation System

    Jin Sun1, Dengyin Zhang1, *, Xiaoye Shi1, Fei Ding1, 2

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1349-1360, 2020, DOI:10.32604/cmc.2020.011459 - 20 August 2020

    Abstract Initial alignment is the precondition for strapdown inertial navigation system (SINS) to navigate. Its two important indexes are accuracy and rapidity, the accuracy of the initial alignment is directly related to the working accuracy of SINS, but in selfalignment, the two indexes are often contradictory. In view of the limitations of conventional data processing algorithms, a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed. By means of data storage, the same data is used in different stages of the initial alignment, which is beneficial to shorten More >

  • Open Access

    ARTICLE

    Non-Exchangeable Error Compensation for Strapdown Inertial Navigation System in High Dynamic Environment

    Qi Wang1, 2, *, Changsong Yang2, 3, Shao’en Wu4

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 973-986, 2020, DOI:10.32604/cmc.2020.07575 - 10 June 2020

    Abstract Strapdown non-exchangeable error compensation technology in high dynamic environment is one of the key technologies of strapdown inertial navigation system. Mathematical platform is used in strapdown inertial navigation system instead of physical platform in traditional platform inertial navigation system, which improves reliability and reduces cost and volume of system. The maximum error source of attitude matrix solution is the non-exchangeable error of rotation due to the non-exchangeable of finite rotation of rigid bodies. The rotation non-exchangeable error reaches the maximum in coning motion, although it can be reduced by shortening the correction period and increasing More >

  • Open Access

    ARTICLE

    Stability Analysis of Transfer Alignment Filter Based on the μ Theory

    Lihua Zhu1, Yu Wang1, Lei Wang2, Zhiqiang Wu1,*

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 1015-1026, 2019, DOI:10.32604/cmc.2019.05656

    Abstract The performance of the transfer alignment has great impact on inertial navigation systems. As the transfer alignment is generally implemented using a filter to compensate the errors, its accuracy, rapidity and anti-disturbance capability are key properties to evaluate the filtering process. In terms of the superiority in dealing with the noise, H∞ filtering has been used to improve the anti-disturbance capability of the transfer alignment. However, there is still a need to incorporate system uncertainty due to various dynamic conditions. Based on the structural value theory, a robustness stability analysis method has been proposed for More >

Displaying 1-10 on page 1 of 4. Per Page