Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    In vitro plant regeneration via indirect organogenesis from different explants of Lathyrus sativus L. and Lathyrus cicera L.

    Li RS1, YJ Tao2, FJ Liu2, X Hu2, QL Xu2, KY Li2

    Phyton-International Journal of Experimental Botany, Vol.85, pp. 87-93, 2016, DOI:10.32604/phyton.2016.85.087

    Abstract The grass pea (Lathyrus sativus L.) and flatpod peavine (Lathyrus cicera L.) are the most economically important and widely cultivated Lathyrus species. However, their utilization is limited due to the presence of their endogenous toxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP). Thus, a β-ODAP free variety should be developed through some plant breeding technique like either mutational breeding or genetic-manipulation. In this circumstance, the plant regeneration of Lathyrus species becomes a bottleneck. In the present study, an efficient system for in vitro regeneration of L. sativus with high β-ODAP levels, and L. cicera with low β-ODAP levels, was developed from different explants (axillary… More >

  • Open Access

    ARTICLE

    EFFECT OF MAGNETIC FIELD ON INDIRECT NATURAL CONVECTION FLOW ABOVE A HORIZONTAL HOT FLAT PLATE

    Tapas Ray Mahapatraa, Sumanta Siduib, Samir Kumar Nandyc,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-15, 2014, DOI:10.5098/hmt.5.15

    Abstract The effect of variable transverse magnetic field on steady two-dimensional indirect natural convection flow of an incompressible viscous fluid over a horizontal hot flat plate is theoretically studied. The governing partial differential equations are transformed into ordinary ones by similarity transformation and solved numerically using fourth order Runge-Kutta method with shooting technique. The results are obtained for the skin friction coefficient and the local Nusselt number as well as the dimensionless velocities, temperature for some values of the magnetic parameter (M) subject to either prescribed (constant or variable) surface temperature or prescribed (variable) heat flux. More >

  • Open Access

    ARTICLE

    Voxel-based Analysis of Electrostatic Fields in Virtual-human Model Duke using Indirect Boundary Element Method with Fast Multipole Method

    S. Hamada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 407-424, 2014, DOI:10.3970/cmes.2014.102.407

    Abstract The voxel-based indirect boundary element method (IBEM) combined with the Laplace-kernel fast multipole method (FMM) is capable of analyzing relatively large-scale problems. A typical application of the IBEM is the electric field analysis in virtual-human models such as the model called Duke provided by the foundation for research on information technologies in society (IT’IS Foundation). An important property of voxel-version Duke models is that they have various voxel sizes but the same structural feature. This property is useful for examining the O(N) and O(D2) dependencies of the calculation times and the amount of memory required by More >

  • Open Access

    ARTICLE

    Output-only System Identification and Damage Assessment through Iterative Model Updating Techniques

    Leandro Fleck Fadel Miguel1, Letícia Fleck Fadel Miguel2

    Structural Durability & Health Monitoring, Vol.8, No.3, pp. 249-270, 2012, DOI:10.32604/sdhm.2012.008.249

    Abstract Model updating may be defined as an adjustment on the FE model through modal parameters experimentally obtained, in order to better represent its dynamic behavior. From this definition, structural health monitoring (SHM) methods can be considered closely related with these procedures, because it refers to the implementation of in situ non-destructive sensing and analysis of the dynamic system characteristics, which aims to detect changes that could indicate damage. Within this context, the present paper evaluates an iterative model updating approach when it is subjected to experimental vibration data. In addition, after getting the experimental adjusted… More >

  • Open Access

    ABSTRACT

    The regularized indirect algorithm in BEM for calculating values on and near boundaries

    H.B. Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 105-106, 2011, DOI:10.3970/icces.2011.020.105

    Abstract The calculation of field values and their derivatives near the domain boundary through the boundary element method (BEM) will meet the nearly singularity problem, i.e. the boundary layer effect problem. The tangential derivatives of field values on the boundary often meet an obvious deduction of calculation accuracy. An effective algorithm was proposed by Chen et al. [1,2] to treat these two problems in the same time in elastic BEM and it was recently extended to calculate the second derivative values in potential problem [3]. This algorithm is based on the regularized formulations and is now More >

  • Open Access

    ARTICLE

    Calculation of Potential Second Derivatives by Means of a Regularized Indirect Algorithm in the Boundary Element Method

    H.B. Chen1, Masa. Tanaka2

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.1, pp. 19-42, 2010, DOI:10.3970/cmes.2010.069.019

    Abstract Highly accurate calculation of derivative values to the field variable is a key issue in numerical analysis of engineering problems. The boundary integral equations (BIEs) of potential second derivatives are of third order singularities and obviously the direct calculation of these high order singular integrals is rather cumbersome. The idea of the present paper is to use an indirect algorithm which is based on the regularized BIE formulations of the potential second derivatives, following the work of the present first author and his coworkers. The regularized formulations, numerical strategies and example tests are given for More >

  • Open Access

    ARTICLE

    New Algorithm for Evaluation of Electric Fields due to Indirect Lightning Strike

    Mahdi Izadi1, Mohd Zainal Abidin Ab. Kadir1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.1, pp. 1-12, 2010, DOI:10.3970/cmes.2010.067.001

    Abstract Evaluation of electric field due to indirect lightning strike is an interesting subject. Calculation of electric and magnetic fields in time domain with the consideration of ground conductivity effect in the shortest possible time is an important objective. In this paper, using dipole method, Maxwell's equation and Cooray-Rubinstein formula, a new method for calculation of electric field in time domain is proposed. In addition, this proposed algorithm can also be used to evaluate the effect at the far distance cases of observation point from lightning channel. More >

  • Open Access

    ARTICLE

    Finite Element Simulations of Four-holes Indirect Extrusion Processes of Seamless Tube

    Dyi-Cheng1, Syuan-Yi Syong1

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 191-200, 2009, DOI:10.3970/cmc.2009.013.191

    Abstract Finite element simulations are performed to investigate the plastic deformation behavior of Ti-6Al-4V titanium alloy during its indirect extrusion through a four-hole die. The simulations assume the die, mandrel and container to be rigid bodies and ignore the temperature change induced during the extrusion process. Under various extrusion conditions, the present numerical analysis investigates the effective stress and profile of product at the exit. The relative influences of the friction factors, the temperature of billet and the eccentricity of four-hole displacement are systematically examined. The simulations focus specifically on the effects of the friction factor, More >

  • Open Access

    ARTICLE

    A Modified Method of Fundamental Solutions with Source on the Boundary for Solving Laplace Equations with Circular and Arbitrary Domains

    D.L. Young1, K.H. Chen2, J.T. Chen3, J.H. Kao4

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.3, pp. 197-222, 2007, DOI:10.3970/cmes.2007.019.197

    Abstract A boundary-type method for solving the Laplace problems using the modified method of fundamental solutions (MMFS) is proposed. The present method (MMFS) implements the singular fundamental solutions to evaluate the solutions, and it can locate the source points on the real boundary as contrasted to the conventional MFS, where a fictitious boundary is needed to avoid the singularity of diagonal term of influence matrices. The diagonal term of influence matrices for arbitrary domain can be novelly determined by relating the MFS with the indirect BEM and are also solved for circular domain analytically by using More >

  • Open Access

    ARTICLE

    Computation of transient viscous flows using indirect radial basis function networks

    N. Mai-Duy1, L. Mai-Cao2, T. Tran-Cong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 59-78, 2007, DOI:10.3970/cmes.2007.018.059

    Abstract In this paper, an indirect/integrated radial-basis-function network (IRBFN) method is further developed to solve transient partial differential equations (PDEs) governing fluid flow problems. Spatial derivatives are discretized using one- and two-dimensional IRBFN interpolation schemes, whereas temporal derivatives are approximated using a method of lines and a finite-difference technique. In the case of moving interface problems, the IRBFN method is combined with the level set method to capture the evolution of the interface. The accuracy of the method is investigated by considering several benchmark test problems, including the classical lid-driven cavity flow. Very accurate results are More >

Displaying 11-20 on page 2 of 24. Per Page