Jiahui Pan1,6,*, Jianhao Zhang1, Fei Wang1,6, Wuhan Liu2, Haiyun Huang3,6, Weishun Tang3, Huijian Liao4, Man Li5, Jianhui Wu1, Xueli Li2, Dongming Quan2, Yuanqing Li3,6
Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 53-71, 2021, DOI:10.32604/iasc.2021.015970
- 17 March 2021
Abstract In this paper, an automatic sleep scoring system based on electroencephalogram (EEG) and electrooculogram (EOG) signals was proposed for sleep stage classification and depression detection. Our automatic sleep stage classification method contained preprocessing based on independent component analysis, feature extraction including spectral features, spectral edge frequency features, absolute spectral power, statistical features, Hjorth features, maximum-minimum distance and energy features, and a modified ReliefF feature selection. Finally, a support vector machine was employed to classify four states (awake, light sleep [LS], slow-wave sleep [SWS] and rapid eye movement [REM]). The overall accuracy of the Sleep-EDF database More >