CMES: The Application Channel for the 2022 Young Researcher Award is now Open
Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1753-1774, 2023, DOI:10.32604/fdmp.2023.025739
The effect of the tilt angle on mixed convection and related heat transfer in a “T” shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated. The considered obstacles are constantly kept at a relatively high (fixed) temperature, while the cavity’s upper wall is cooled. The finite volume approach is used to solve the mass, momentum, and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling. Emphasis is put on the influence of the tilt angle on the solution symmetry, flow structure, and heat exchange through the walls. The following parameters… More >
Graphic Abstract
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1619-1629, 2022, DOI:10.32604/fdmp.2022.022220
Abstract The present study deals with double-diffusive convection within a two-dimensional inclined cavity filled with an air-CO2 binary gas mixture. The left and the right vertical walls are differentially heated and subjected to different locations of (CO2) contaminants to allow for the variation of the buoyancy strength (N). However, the horizontal walls are assumed adiabatic. The simulations are conducted using the finite volume method to solve the conservation equations of continuity, momentum, energy, and species transport. Good agreement with other numerical results in the literature is obtained. The effect of multiple parameters, namely, buoyancy ratio (N), thermal Rayleigh number (Ra), and… More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1363-1371, 2022, DOI:10.32604/fdmp.2022.019746
Abstract The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally. In particular, a total of 25 experiments have been carried out to explore the influences of the jet angle and application time on the considered submerged sand beds. Test results conducted with a specially-designed device have shown that the scouring efficiency attains a maximum when the inclination angle is in the range between 15° and 20° and then it decreases when the inclination angle becomes higher. More >
Open Access
ARTICLE
FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 475-488, 2020, DOI:10.32604/fdmp.2020.08896
Abstract The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow. The existing studies on this subject have generally been based on vertical and horizontal wells. Only a few of them have considered inclined pipes. In the present work a new focused study is presented along these lines. More specifically, we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula (together with the parameters of slippage density, slippage pressure drop and slippage ratio) to analyze the influence of the inclination angle on slippage loss for different conditions (different… More >
Open Access
ABSTRACT
Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 120-122, 2019, DOI:10.32604/mcb.2019.07150
Abstract Scoliosis is the most common type of spinal deformity of the young adults, and women outnumber men about 10:1 [1], in which the Adolescent Idiopathic Scoliosis (AIS) is up to 90% for ages 10 to 16year-old teenagers [2]. Studies revealed that due to the 3-dimensional musculoskeletal deformities, the AIS subjects to the dynamic postural instability including vestibular and proprioception disorders [3-5]. Dynamic postural Balance is monitored by integration of cortical modulation and somatosensory response [6], and the either motor or sensory impairment lead to balance dysfunction as well as pathologic gait. Studies revealed that the biomechanics functional foot orthotics can… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 559-574, 2012, DOI:10.3970/cmes.2012.084.559
Abstract Natural convection in a differentially heated enclosure plays vital role in engineering applications such as nuclear reactor, electronic cooling technologies, roof ventilation, etc. The developed thermal flow patterns induced by the density difference are expected to be critically dependence on the inclination angles of the cavity. Hence, thermal and fluid flow pattern inside a differentially heated side enclosure walls with various inclination angles have been investigated numerically using the mesoscale lattice Boltzmann scheme. Three different dimensionless Rayleigh numbers were used, and a dimensionless Prandtl number of 0.71 was set to simulate the circulation of air in the system. It was… More >