Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    An Enhanced Integrated Method for Healthcare Data Classification with Incompleteness

    Sonia Goel1,#, Meena Tushir1, Jyoti Arora2, Tripti Sharma2, Deepali Gupta3, Ali Nauman4,#, Ghulam Muhammad5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3125-3145, 2024, DOI:10.32604/cmc.2024.054476 - 18 November 2024

    Abstract In numerous real-world healthcare applications, handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification tasks. Traditional approaches often rely on statistical methods for imputation, which may yield suboptimal results and be computationally intensive. This paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved accuracy. Conventional classification methods are ill-suited for incomplete medical data. To enhance efficiency without compromising accuracy, this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete data. Initially, the linear More >

  • Open Access

    ARTICLE

    Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network

    Zihao Song, Yan Zhou*, Wei Cheng, Futai Liang, Chenhao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3349-3376, 2024, DOI:10.32604/cmc.2024.047034 - 26 March 2024

    Abstract The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.… More >

  • Open Access

    ARTICLE

    A Work Review on Clinical Laboratory Data Utilizing Machine Learning Use-Case Methodology

    Uma Ramasamy*, Sundar Santhoshkumar

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 1-14, 2024, DOI:10.32604/jimh.2023.046995 - 10 January 2024

    Abstract More than 140 autoimmune diseases have distinct autoantibodies and symptoms, and it makes it challenging to construct an appropriate model using Machine Learning (ML) for autoimmune disease. Arthritis-related autoimmunity requires special attention. Although many conventional biomarkers for arthritis have been established, more biomarkers of arthritis autoimmune diseases remain to be identified. This review focuses on the research conducted using data obtained from clinical laboratory testing of real-time arthritis patients. The collected data is labelled the Arthritis Profile Data (APD) dataset. The APD dataset is the retrospective data with many missing values. We undertook a comprehensive… More >

  • Open Access

    ARTICLE

    Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction

    Dong-Hoon Shin1, Seo-El Lee2, Byeong-Uk Jeon1, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1925-1940, 2023, DOI:10.32604/iasc.2023.039317 - 21 June 2023

    Abstract Recently, the importance of data analysis has increased significantly due to the rapid data increase. In particular, vehicle communication data, considered a significant challenge in Intelligent Transportation Systems (ITS), has spatiotemporal characteristics and many missing values. High missing values in data lead to the decreased predictive performance of models. Existing missing value imputation models ignore the topology of transportation networks due to the structural connection of road networks, although physical distances are close in spatiotemporal image data. Additionally, the learning process of missing value imputation models requires complete data, but there are limitations in securing More >

  • Open Access

    REVIEW

    A broad overview of genotype imputation: Standard guidelines, approaches, and future investigations in genomic association studies

    MIRKO TRECCANI*, ELENA LOCATELLI, CRISTINA PATUZZO, GIOVANNI MALERBA*

    BIOCELL, Vol.47, No.6, pp. 1225-1241, 2023, DOI:10.32604/biocell.2023.027884 - 19 May 2023

    Abstract The advent of genomic big data and the statistical need for reaching significant results have led genome-wide association studies to be ravenous of a huge number of genetic markers scattered along the whole genome. Since its very beginning, the so-called genotype imputation served this purpose; this statistical and inferential procedure based on a known reference panel opened the theoretical possibility to extend association analyses to a greater number of polymorphic sites which have not been previously assayed by the used technology. In this review, we present a broad overview of the genotype imputation process, showing More >

  • Open Access

    ARTICLE

    Towards Improving Predictive Statistical Learning Model Accuracy by Enhancing Learning Technique

    Ali Algarni1, Mahmoud Ragab2,3,4,*, Wardah Alamri5, Samih M. Mostafa6

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 303-318, 2022, DOI:10.32604/csse.2022.022152 - 02 December 2021

    Abstract The accuracy of the statistical learning model depends on the learning technique used which in turn depends on the dataset’s values. In most research studies, the existence of missing values (MVs) is a vital problem. In addition, any dataset with MVs cannot be used for further analysis or with any data driven tool especially when the percentage of MVs are high. In this paper, the authors propose a novel algorithm for dealing with MVs depending on the feature selection (FS) of similarity classifier with fuzzy entropy measure. The proposed algorithm imputes MVs in cumulative order.… More >

  • Open Access

    ARTICLE

    Hybrid Online Model for Predicting Diabetes Mellitus

    C. Mallika1,*, S. Selvamuthukumaran2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1873-1885, 2022, DOI:10.32604/iasc.2022.020543 - 09 October 2021

    Abstract Modern healthcare systems have become smart by synergizing the potentials of wireless sensors, the medical Internet of things, and big data science to provide better patient care while decreasing medical expenses. Large healthcare organizations generate and accumulate an incredible volume of data continuously. The already daunting volume of medical information has a massive amount of diagnostic features and logged details of patients for certain diseases such as diabetes. Diabetes mellitus has emerged as along-haul fatal disease across the globe and particularly in developing countries. Exact and early diagnosis of diabetes from big medical data is… More >

  • Open Access

    ARTICLE

    Improved KNN Imputation for Missing Values in Gene Expression Data

    Phimmarin Keerin1, Tossapon Boongoen2,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4009-4025, 2022, DOI:10.32604/cmc.2022.020261 - 27 September 2021

    Abstract The problem of missing values has long been studied by researchers working in areas of data science and bioinformatics, especially the analysis of gene expression data that facilitates an early detection of cancer. Many attempts show improvements made by excluding samples with missing information from the analysis process, while others have tried to fill the gaps with possible values. While the former is simple, the latter safeguards information loss. For that, a neighbour-based (KNN) approach has proven more effective than other global estimators. The paper extends this further by introducing a new summarization method to… More >

  • Open Access

    ARTICLE

    Comparison of Missing Data Imputation Methods in Time Series Forecasting

    Hyun Ahn1, Kyunghee Sun2, Kwanghoon Pio Kim3,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 767-779, 2022, DOI:10.32604/cmc.2022.019369 - 07 September 2021

    Abstract Time series forecasting has become an important aspect of data analysis and has many real-world applications. However, undesirable missing values are often encountered, which may adversely affect many forecasting tasks. In this study, we evaluate and compare the effects of imputation methods for estimating missing values in a time series. Our approach does not include a simulation to generate pseudo-missing data, but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom. In an experiment, therefore, several time series forecasting models are trained using different training datasets prepared More >

  • Open Access

    ARTICLE

    A Fast and Effective Multiple Kernel Clustering Method on Incomplete Data

    Lingyun Xiang1,2, Guohan Zhao1, Qian Li3, Gwang-Jun Kim4,*, Osama Alfarraj5, Amr Tolba5,6

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 267-284, 2021, DOI:10.32604/cmc.2021.013488 - 12 January 2021

    Abstract Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled. However, multiple kernel clustering for incomplete data is a critical yet challenging task. Although the existing absent multiple kernel clustering methods have achieved remarkable performance on this task, they may fail when data has a high value-missing rate, and they may easily fall into a local optimum. To address these problems, in this paper, we propose an absent multiple kernel clustering (AMKC) method on incomplete data. The… More >

Displaying 1-10 on page 1 of 11. Per Page