Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

    Feyza Altunbey Özbay1, Erdal Özbay2, Farhad Soleimanian Gharehchopogh3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1067-1110, 2024, DOI:10.32604/cmes.2024.054334 - 27 September 2024

    Abstract Artificial rabbits optimization (ARO) is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature. However, for solving optimization problems, the ARO algorithm shows slow convergence speed and can fall into local minima. To overcome these drawbacks, this paper proposes chaotic opposition-based learning ARO (COARO), an improved version of the ARO algorithm that incorporates opposition-based learning (OBL) and chaotic local search (CLS) techniques. By adding OBL to ARO, the convergence speed of the algorithm increases and it explores the search space better. Chaotic maps in CLS… More > Graphic Abstract

    An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem

  • Open Access

    ARTICLE

    Stochastic Programming for Hub Energy Management Considering Uncertainty Using Two-Point Estimate Method and Optimization Algorithm

    Ali S. Alghamdi1, Mohana Alanazi2, Abdulaziz Alanazi3, Yazeed Qasaymeh1,*, Muhammad Zubair1,4, Ahmed Bilal Awan5, M. G. B. Ashiq6

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2163-2192, 2023, DOI:10.32604/cmes.2023.029453 - 03 August 2023

    Abstract To maximize energy profit with the participation of electricity, natural gas, and district heating networks in the day-ahead market, stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources, has been carried out. This has been done using a new meta-heuristic algorithm, improved artificial rabbits optimization (IARO). In this study, the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method (TPEM). The IARO algorithm is applied to calculate the best capacity of hub energy equipment, such as solar and wind renewable energy sources, combined heat… More >

Displaying 1-10 on page 1 of 2. Per Page