Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View

    Xiangyan Tang1,2, Chengchun Ruan1,2,*, Xiulai Li2,3, Binbin Li1,2, Cebin Fu1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 983-1003, 2024, DOI:10.32604/cmc.2024.047541 - 25 April 2024

    Abstract Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in the field of small object detection on unmanned aerial vehicles (UAVs). This task is challenging due to variations in UAV flight altitude, differences in object scales, as well as factors like flight speed and motion blur. To enhance the detection efficacy of small targets in drone aerial imagery, we propose an enhanced You Only Look Once version 7 (YOLOv7) algorithm based on multi-scale spatial context. We build the MSC-YOLO model, which incorporates an additional prediction head, denoted as P2, to… More >

  • Open Access

    ARTICLE

    An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7

    Liqiu Ren, Zhanying Li*, Xueyu He, Lingyan Kong, Yinghao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2829-2845, 2024, DOI:10.32604/cmc.2024.047028 - 27 February 2024

    Abstract For underwater robots in the process of performing target detection tasks, the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model, which is prone to issues like error detection, omission detection, and poor accuracy. Therefore, this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7) underwater target detection algorithm. To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase, we have added a Convolutional Block Attention Module (CBAM) to the backbone network. The Reparameterization Visual Geometry Group (RepVGG)… More >

  • Open Access

    ARTICLE

    Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7

    Yongliang Yang, Linghua Xu*, Maolin Luo, Xiao Wang, Min Cao

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2741-2765, 2024, DOI:10.32604/cmc.2024.046768 - 27 February 2024

    Abstract Due to the complex environment of the university laboratory, personnel flow intensive, personnel irregular behavior is easy to cause security risks. Monitoring using mainstream detection algorithms suffers from low detection accuracy and slow speed. Therefore, the current management of personnel behavior mainly relies on institutional constraints, education and training, on-site supervision, etc., which is time-consuming and ineffective. Given the above situation, this paper proposes an improved You Only Look Once version 7 (YOLOv7) to achieve the purpose of quickly detecting irregular behaviors of laboratory personnel while ensuring high detection accuracy. First, to better capture the… More >

  • Open Access

    ARTICLE

    An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7

    Chao Dong, Xiangkui Jiang*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3015-3036, 2023, DOI:10.32604/cmc.2023.044735 - 26 December 2023

    Abstract To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images, this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds, called DI-YOLO, based on You Only Look Once v7-tiny (YOLOv7-tiny). Firstly, to enhance the model’s ability to capture irregular-shaped objects and deformation features, as well as to extract high-level semantic information, deformable convolutions are used to replace standard convolutions in the original model. Secondly, a Content Coordination Attention Feature Pyramid Network (CCA-FPN) structure is designed to replace the… More >

  • Open Access

    ARTICLE

    Ship Detection and Recognition Based on Improved YOLOv7

    Wei Wu1, Xiulai Li2, Zhuhua Hu1, Xiaozhang Liu3,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 489-498, 2023, DOI:10.32604/cmc.2023.039929 - 08 June 2023

    Abstract In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multi-scale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced More >

Displaying 1-10 on page 1 of 5. Per Page