Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (308)
  • Open Access

    ARTICLE

    Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs

    Lijun Mu, Xiaojia Xue, Jie Bai*, Xiaoyan Li, Xueliang Han

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1365-1379, 2024, DOI:10.32604/fdmp.2024.049013

    Abstract Following large-scale volume fracturing in shale oil reservoirs, well shut-in measures are generally employed. Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity. Unlike conventional reservoirs, shale oil reservoirs exhibit characteristics such as low porosity, low permeability, and rich content of organic matter and clay minerals. Notably, the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant. The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous, and the… More >

  • Open Access

    ARTICLE

    Investigation of the Damping Abilities of Sheep Wool Reinforced Expanded Polystyrene Core Layer Composites at Different Energies

    İbrahim Yavuz1,*, Ercan Şimşir1, Kenan Budak2

    Journal of Polymer Materials, Vol.41, No.1, pp. 1-14, 2024, DOI:10.32604/jpm.2024.052279

    Abstract In this study, natural fiber reinforced polymer foam core layered composites were produced for the automotive industry. Sheep wool was used as natural fiber. Polymer foam with a single layer XPS foam structure was used as the core material. XPS foams and fibers are bonded to the upper and lower sides of the foams with the help of resin. Samples were produced with one and two layers on both sides, with a total of two and four layers. Production was carried out using the vacuum bagging method using the manual laying method. After the production More >

  • Open Access

    ARTICLE

    Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells

    Jianchao Shi1,2, Yanan Zhang3, Wantao Liu1,2, Yuliang Su3,*, Jian Shi1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1147-1163, 2024, DOI:10.32604/fdmp.2023.044500

    Abstract Class III tight oil reservoirs have low porosity and permeability, which are often responsible for low production rates and limited recovery. Extensive repeated fracturing is a well-known technique to fix some of these issues. With such methods, existing fractures are refractured, and/or new fractures are created to facilitate communication with natural fractures. This study explored how different refracturing methods affect horizontal well fracture networks, with a special focus on morphology and related fluid flow changes. In particular, the study relied on the unconventional fracture model (UFM). The evolution of fracture morphology and flow field after More >

  • Open Access

    REVIEW

    Impact of Exercise on Depression in Older Adults: Potential Benefits, Risks, and Appropriate Application Strategies

    Xingbin Du1,2, Jianda Kong3,*

    International Journal of Mental Health Promotion, Vol.26, No.5, pp. 345-350, 2024, DOI:10.32604/ijmhp.2024.049764

    Abstract As the global elderly population increases, depression within this group has become a significant public health concern. Although exercise has been recognized for its potential to improve depression in the elderly, the benefits, risks, and implementation strategies remain contentious. This review attempts to examine the impact of exercise on depression in older adults, including potential benefits, risks, and suggestions for application. Our analysis highlights the benefits of aerobic and resistance training, which can significantly alleviate depressive symptoms and enhance overall quality of life. Despite these benefits, the review acknowledges the complexity of the exercise-depression interaction More >

  • Open Access

    ARTICLE

    The Impact of Sleep Determination on Procrastination before Bedtime: The Role of Anxiety

    Na Liu1, Junxiu Wang2,3, Wanli Zang4,*

    International Journal of Mental Health Promotion, Vol.26, No.5, pp. 377-387, 2024, DOI:10.32604/ijmhp.2024.047808

    Abstract Objective: The importance of good sleep for energy recovery and overall physical and mental health cannot be overstated. However, the increasing competitiveness of society, diversifying lifestyles, and the rapid spread of the internet and electronic devices have significantly impacted people’s sleep patterns, particularly through bedtime procrastination. Therefore, this study aims to investigate the relationship and underlying mechanisms between sleep determination, anxiety, and bedtime procrastination among the Chinese population. Method: The study utilized data from a national survey—the China Residents’ Sleep Condition Survey (November 2021, with 6,037 participants). By constructing mediation and moderation models, it analyzed the… More >

  • Open Access

    ARTICLE

    Optimizing Sustainability: Exergoenvironmental Analysis of a Multi-Effect Distillation with Thermal Vapor Compression System for Seawater Desalination

    Zineb Fergani1, Zakaria Triki1, Rabah Menasri1, Hichem Tahraoui1,2,*, Meriem Zamouche3, Mohammed Kebir4, Jie Zhang5, Abdeltif Amrane6,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 455-473, 2024, DOI:10.32604/fhmt.2024.050332

    Abstract Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues. This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression (MED-TVC) system, a highly promising desalination technology. The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression. The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact, considering both energy and exergy aspects. The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process, providing a holistic… More >

  • Open Access

    ARTICLE

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

    Abeer H. Falih*, Basima Salman Khalaf, Basim Freegah

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 597-613, 2024, DOI:10.32604/fhmt.2024.049812

    Abstract In this study, the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions. To accomplish this, a comprehensive numerical investigation was conducted using ANSYS Fluent 2022 R1 software, focusing on different diameters of dimples along the pipe’s length and the distribution of dimples in both in-line and staggered arrangements. The simulations utilized the finite element method to address turbulent flow within the tube by solving partial differential equations, encompassing Re numbers spanning from 3000 to 8000. The study specifically examined single-phase… More > Graphic Abstract

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

  • Open Access

    ARTICLE

    Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures

    AL-Bukhaiti Khalil1, Yanhui Liu1,*, Shichun Zhao1, Daguang Han2

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 223-254, 2024, DOI:10.32604/sdhm.2024.044751

    Abstract This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision. The initial discussion revolves around the stress and strain of large deformation during a collision, followed by explanations of the fundamental finite element solution method for addressing such issues. The hourglass mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed and implemented within the finite element framework. The paper further investigates the dynamic response and failure modes of Reinforced Concrete (RC)… More >

  • Open Access

    ARTICLE

    The Impact of Network Topologies and Radio Duty Cycle Mechanisms on the RPL Routing Protocol Power Consumption

    Amal Hkiri1,*, Hamzah Faraj2, Omar Ben Bahri2, Mouna Karmani1, Sami Alqurashi2, Mohsen Machhout1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1835-1854, 2024, DOI:10.32604/cmc.2024.049207

    Abstract The Internet of Things (IoT) has witnessed a significant surge in adoption, particularly through the utilization of Wireless Sensor Networks (WSNs), which comprise small internet-connected devices. These deployments span various environments and offer a multitude of benefits. However, the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities. In response to this, the Internet Engineering Task Force (IETF) has developed the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) to address the unique requirements of such networks. Recognizing the critical role of RPL in maintaining high performance,… More >

  • Open Access

    ARTICLE

    Blade Wrap Angle Impact on Centrifugal Pump Performance: Entropy Generation and Fluid-Structure Interaction Analysis

    Hayder Kareem Sakran1,2, Mohd Sharizal Abdul Aziz1,*, Chu Yee Khor3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 109-137, 2024, DOI:10.32604/cmes.2024.047245

    Abstract The centrifugal pump is a prevalent power equipment widely used in different engineering patterns, and the impeller blade wrap angle significantly impacts its performance. A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69. This study investigates six impeller models that possess varying blade wrap angles (95°, 105°, 115°, 125°, 135°, and 145°) that were created while maintaining the same volute and other geometrical characteristics. The investigation of energy loss… More > Graphic Abstract

    Blade Wrap Angle Impact on Centrifugal Pump Performance: Entropy Generation and Fluid-Structure Interaction Analysis

Displaying 1-10 on page 1 of 308. Per Page