Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Remediation of Cu Contaminated Soil by Fe78Si9B13AP Permeability Reaction Barrier Combined with Electrokinetic Method

    Liefei Pei1,2, Xiangyun Zhang1, Zizhou Yuan1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2969-2983, 2023, DOI:10.32604/jrm.2023.025760 - 27 April 2023

    Abstract Iron-based amorphous crystalline powder Fe78Si9B13AP is used as a permeability reaction barrier (PRB) combined with an electrokinetic method (EK-PRB) to study the removal rate of Cu in contaminated soil. After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content, the soil pH is between 3.1 and 7.2. The increase of voltage gradient and soil water content can effectively promote the movement of Cu2+ to the cathode. The voltage gradient is 3 V/cm, and the water content of 40% is considered to be an optional experimental condition. Therefore, under this condition, the More >

  • Open Access

    ARTICLE

    Rapid Immobilization of Transferable Ni in Soil by Fe78Si9B13 Amorphous Zero-Valent Iron

    Liefei Pei, Xiangyun Zhang, Zizhou Yuan*

    Journal of Renewable Materials, Vol.10, No.4, pp. 955-968, 2022, DOI:10.32604/jrm.2022.016961 - 02 November 2021

    Abstract Fe-Si-B amorphous zero-valent iron has attracted wide attention because of its efficient remediation of heavy metals and dye wastewater. In this paper, the remediation effect of amorphous zero-valent iron powder (Fe78Si9B13AP) on Ni contaminated soil was investigated. Results show that the immobilization efficiency of nickel in soil by Fe78Si9B13AP with low iron content is higher than that by ZVI. The apparent activation energies of the reactions of Fe78Si9B13AP with Ni2+ ions is 25.31 kJ/mol. After continuing the reaction for 7 days, Ni2+ ions is mainly transformed into monoplasmatic nickel (Ni0) and nickel combined with iron (hydroxide) oxides. Microstructure More >

  • Open Access

    ARTICLE

    Synthesis of poly(ω-pentadecalactone) using Lipase Immobilized onto a Renewable Carrier, Rice husk ash and their Characterization

    CANSU ULKER TURAN1,*, YUKSEL GUVENILIR1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 271-280, 2021, DOI:10.32381/JPM.2021.38.3-4.8

    Abstract Rice husk ash is a side-product of rice production; thus, it is a cheap, abundant, and renewable material, and utilized as an enzyme carrier to immobilize Candida antarctica lipase B. In this study, Candida antarctica lipase B immobilized onto rice husk ashes was used to catalyze ring opening polymerization of 16-membered lactone, ω-pentadecalactone. In order to determine the best polymerization conditions for highest molar mass polymer, reactions were proceeded at various temperatures and time periods. The best reaction conditions were obtained as 80°C and 6 hours (Mn = 34255 g mol-1). Molecular structure of this polymer More >

  • Open Access

    ARTICLE

    Changes in neuropeptides related to food intake in the rat arcuate nucleus after chronic immobilization stress and the effect of comfortable music exposure

    HAO WANG1,2,#, FANG FANG1,#, CHAOYI FANG1, RUNSHENG ZHAO1,*, SHAOXIAN WANG1,*

    BIOCELL, Vol.44, No.3, pp. 421-429, 2020, DOI:10.32604/biocell.2020.010257 - 22 September 2020

    Abstract Stress is an inevitable interference factor that seriously affects health. Listening to music is an economical, noninvasive, and highly accepted tool for easing stress. However, physiological studies investigating the ability of music to reduce stress in daily life are limited. We established rat models of chronic immobilization stress (CIS) to observe changes in the hypothalamic arcuate nucleus (ARC) neurons involved in the regulation of food intake and the effect of comfortable classical music exposure. Twenty-one days of stress resulted in decreased food intake and delayed body weight gain; up-regulation of leptin receptor (Ob-R), cocaine- and… More >

  • Open Access

    REVIEW

    Fungal assembly of L-asparaginase using solid-state fermentation: a review

    SALLY NASER1,2, WESAMELDIN SABER3, MOHAMMAD EL-METWALLY4,*, MAHMOUD MOUSTAFA5,6, ATTALLA EL-KOTT5,7

    BIOCELL, Vol.44, No.2, pp. 147-155, 2020, DOI:10.32604/biocell.2020.09522 - 27 May 2020

    Abstract Because of its antitumor therapeutic-activity, as well as its application in food industries to improve the quality, L-asparaginase has attracted considerable attention from several investigators. In recent years, fungi have occupied advanced rank among microorganisms in the production process of the enzyme. This review is spotting the light on the advantages of fungal enzyme and its applications in the food industry and medications. The solid-state fermentation was discussed as the wide alternative and most accepted biosynthesis technique. However, some lights were also spotted to the statistical experimental design of the fermentation process, mainly on the More >

  • Open Access

    ARTICLE

    Covalent Immobilization of Lipase on Novel Nanofibrous Membrane for Catalysis of the Organic Synthesis

    YINCHUN FANGa, XINHUA LIUa,b,*, XU YANGa, CUIE WANGa,*

    Journal of Polymer Materials, Vol.36, No.2, pp. 111-119, 2019, DOI:10.32381/JPM.2019.36.02.1

    Abstract Enzymes are green biocatalysts which have been widely used in many fields. Immobilization enzymes on nanofibrous membrane possessed easy recycling and high stability which would broaden their applications. Covalent immobilization of lipase could endow them higher stability than other protocols. In this study, a novel nanofibrous membrane containing epoxy groups and hydrophilic polyethylene oxide branch was used as a support for lipase immobilization. The immobilized lipase was used as the biocatalyst to catalyse Rap. stroermer reaction. The results showed that it obtained the high product yield of 88% when the volume ratio of methanol and More >

  • Open Access

    ARTICLE

    Performance Comparison of Commercial and Home-Made Lipases for Synthesis of Poly(δ-Valerolactone) Homopolymers

    Cansu Ulker*, Zeynep Gok, Yuksel Guvenilir

    Journal of Renewable Materials, Vol.7, No.4, pp. 335-343, 2019, DOI:10.32604/jrm.2019.03819

    Abstract Novozyme 435, which is the commercially available immobilized form of Candida antarctica lipase B, has been successfully conducted ring opening polymerization of lactones in organic solvents. In this paper, it was aimed to introduce an alternative biocatalyst for Novozyme 435. Candida antarctica lipase B immobilized onto rice husk ashes via physical adsorption (with a specific activity of 4.4 U/mg) was prepared in previous studies and used as a biocatalyst for poly(δ-valerolactone) synthesis in the present work. Polymerization reactions were proceeded at various reaction temperatures and periods via both two immobilized enzyme preparations. The resulting products More >

  • Open Access

    ARTICLE

    Feasible design for electricity generation from Chlorella vulgaris using convenient photosynthetic conditions

    Mahmoud MOUSTAFA1,2*, Tarek TAHA3, Mohamed ELNOUBY4, M.A. ABU-SAIED5, Ali SHATI1, Mohamed AL-KAHTANI1, Sulaiman ALRUMMAN1

    BIOCELL, Vol.42, No.1, pp. 7-12, 2018, DOI:10.32604/biocell.2018.07002

    Abstract Many recent studies are concerned with low cost, easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage. Microalgae are unicellular entities the can only depend on CO2, water and solar power to cover their nutritional needs. The current study is concerned with using algal cells in a polymeric hydrogel, as a cheap source of energy for electricity generation. Chlorella vulgaris has been proved to be a promising algal species for electricity generation, as compared with Micractinium reisseri. PVA hydrogel has been used for the immobilization of both algal… More >

  • Open Access

    ARTICLE

    Enzymatic Synthesis of Polycaprolactone: Effect of Immobilization Mechanism of CALB on Polycaprolactone Synthesis

    Yasemin Kaptan, M.Sc.1,*, Yüksel Avcıbaşı-Güvenilir1

    Journal of Renewable Materials, Vol.6, No.6, pp. 619-629, 2018, DOI:10.32604/JRM.2018.00142

    Abstract Surface-modified rice husk ash was used as an inorganic support material for immobilization of Candida antarctica lipase B. (3-aminopropyl) trimethoxysilane was used for surface modification. Immobilization of CALB was performed via both physical adsorption and cross-linking. PCL synthesis was carried out by using these immobilized enzymes, free enzyme and Novozyme 435®. Molecular weight distribution of polymer samples was obtained by gel permeation chromatography (GPC) and chain structures of the polymer samples were observed by hydrogen nuclear magnetic resonance (1H-NMR). The highest monomer conversion is generally obtained by using cross-linked enzyme, around 90%. PDI values for More >

  • Open Access

    ARTICLE

    Cytotoxicity assessment of a gold nanoparticle-chitosan nanocomposite as an effi cient support for cell immobilization: comparison with chitosan hydrogel and chitosan-gelatin

    Mohammad Reza RAMEZANI1, Hossein NADERI-MANESH1, *, Hossain-Ali RAFIEEPOUR2

    BIOCELL, Vol.38, No.1, pp. 11-16, 2014, DOI:10.32604/biocell.2014.38.011

    Abstract Cell-based biosensors have become a research hotspot in the biosensors and bioelectronics fields. The main feature of cell-based biosensors is immobilization of living cells on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and should have reactive functional groups for further attachment of biomolecules. In this work, cell attachment and proliferation on chitosan hydrogel, chitosan-gelatin and gold nanoparticle-chitosan nanocomposite membranes was studied. Characterization of the membranes was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Cytotoxicity assessment on HEK293 More >

Displaying 1-10 on page 1 of 10. Per Page