Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MEM-TET: Improved Triplet Network for Intrusion Detection System

    Weifei Wang1, Jinguo Li1,*, Na Zhao2, Min Liu1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 471-487, 2023, DOI:10.32604/cmc.2023.039733 - 08 June 2023

    Abstract With the advancement of network communication technology, network traffic shows explosive growth. Consequently, network attacks occur frequently. Network intrusion detection systems are still the primary means of detecting attacks. However, two challenges continue to stymie the development of a viable network intrusion detection system: imbalanced training data and new undiscovered attacks. Therefore, this study proposes a unique deep learning-based intrusion detection method. We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data. Then the original data is… More >

  • Open Access

    ARTICLE

    Enhanced Coyote Optimization with Deep Learning Based Cloud-Intrusion Detection System

    Abdullah M. Basahel1, Mohammad Yamin1, Sulafah M. Basahel2, E. Laxmi Lydia3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4319-4336, 2023, DOI:10.32604/cmc.2023.033497 - 31 October 2022

    Abstract Cloud Computing (CC) is the preference of all information technology (IT) organizations as it offers pay-per-use based and flexible services to its users. But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders. Intrusion Detection System (IDS) refers to one of the commonly utilized system for detecting attacks on cloud. IDS proves to be an effective and promising technique, that identifies malicious activities and known threats by observing traffic data in computers, and warnings are given when such threats were identified. The… More >

  • Open Access

    ARTICLE

    An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data

    Romany F. Mansour1,*, Shaha Al-Otaibi2, Amal Al-Rasheed2, Hanan Aljuaid3, Irina V. Pustokhina4, Denis A. Pustokhin5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2843-2858, 2021, DOI:10.32604/cmc.2021.016626 - 06 May 2021

    Abstract Big data streams started becoming ubiquitous in recent years, thanks to rapid generation of massive volumes of data by different applications. It is challenging to apply existing data mining tools and techniques directly in these big data streams. At the same time, streaming data from several applications results in two major problems such as class imbalance and concept drift. The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection (MOMBD-CDD) method on High-Dimensional Streaming Data. The presented MOMBD-CDD model has different operational stages such as pre-processing, CDD, and… More >

Displaying 1-10 on page 1 of 3. Per Page