Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open Access

    ARTICLE

    A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data

    P. K. A. Chitra1, S. Appavu alias Balamurugan2, S. Geetha3, Seifedine Kadry4,5,6, Jungeun Kim7,*, Keejun Han8

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1367-1385, 2024, DOI:10.32604/csse.2023.034373 - 13 September 2024

    Abstract A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning. The main objective of this work is to create a novel framework for learning and classifying imbalanced multi-label data. This work proposes a framework of two phases. The imbalanced distribution of the multi-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1. Later, an adaptive weighted l21 norm regularized (Elastic-net) multi-label logistic regression is used to predict unseen samples in phase 2. The proposed… More >

  • Open Access

    ARTICLE

    Cost-Sensitive Dual-Stream Residual Networks for Imbalanced Classification

    Congcong Ma1,2, Jiaqi Mi1, Wanlin Gao1,2, Sha Tao1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4243-4261, 2024, DOI:10.32604/cmc.2024.054506 - 12 September 2024

    Abstract Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number of samples between different classes. This task is prevalent in practical scenarios such as industrial fault diagnosis, network intrusion detection, cancer detection, etc. In imbalanced classification tasks, the focus is typically on achieving high recognition accuracy for the minority class. However, due to the challenges presented by imbalanced multi-class datasets, such as the scarcity of samples in minority classes and complex inter-class relationships with overlapping boundaries, existing methods often do not perform well in multi-class imbalanced data… More >

  • Open Access

    ARTICLE

    Anomaly Detection in Imbalanced Encrypted Traffic with Few Packet Metadata-Based Feature Extraction

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 585-607, 2024, DOI:10.32604/cmes.2024.051221 - 20 August 2024

    Abstract In the IoT (Internet of Things) domain, the increased use of encryption protocols such as SSL/TLS, VPN (Virtual Private Network), and Tor has led to a rise in attacks leveraging encrypted traffic. While research on anomaly detection using AI (Artificial Intelligence) is actively progressing, the encrypted nature of the data poses challenges for labeling, resulting in data imbalance and biased feature extraction toward specific nodes. This study proposes a reconstruction error-based anomaly detection method using an autoencoder (AE) that utilizes packet metadata excluding specific node information. The proposed method omits biased packet metadata such as… More >

  • Open Access

    ARTICLE

    Learning Vector Quantization-Based Fuzzy Rules Oversampling Method

    Jiqiang Chen, Ranran Han, Dongqing Zhang, Litao Ma*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5067-5082, 2024, DOI:10.32604/cmc.2024.051494 - 20 June 2024

    Abstract Imbalanced datasets are common in practical applications, and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes. However, the creation of fuzzy rules typically depends on expert knowledge, which may not fully leverage the label information in training data and may be subjective. To address this issue, a novel fuzzy rule oversampling approach is developed based on the learning vector quantization (LVQ) algorithm. In this method, the label information of the training data is utilized to determine the antecedent… More >

  • Open Access

    ARTICLE

    Scientific Elegance in NIDS: Unveiling Cardinality Reduction, Box-Cox Transformation, and ADASYN for Enhanced Intrusion Detection

    Amerah Alabrah*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3897-3912, 2024, DOI:10.32604/cmc.2024.048528 - 20 June 2024

    Abstract The emergence of digital networks and the wide adoption of information on internet platforms have given rise to threats against users’ private information. Many intruders actively seek such private data either for sale or other inappropriate purposes. Similarly, national and international organizations have country-level and company-level private information that could be accessed by different network attacks. Therefore, the need for a Network Intruder Detection System (NIDS) becomes essential for protecting these networks and organizations. In the evolution of NIDS, Artificial Intelligence (AI) assisted tools and methods have been widely adopted to provide effective solutions. However,… More >

  • Open Access

    ARTICLE

    An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine

    Bo Zhu*, Xiaona Jing, Lan Qiu, Runbo Li

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3977-3999, 2024, DOI:10.32604/cmc.2024.048062 - 20 June 2024

    Abstract When building a classification model, the scenario where the samples of one class are significantly more than those of the other class is called data imbalance. Data imbalance causes the trained classification model to be in favor of the majority class (usually defined as the negative class), which may do harm to the accuracy of the minority class (usually defined as the positive class), and then lead to poor overall performance of the model. A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article, which is based on a new hybrid… More >

  • Open Access

    ARTICLE

    Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling

    Bayi Xu1, Lei Sun2,*, Xiuqing Mao2, Chengwei Liu3, Zhiyi Ding2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1995-2022, 2024, DOI:10.32604/cmc.2023.046478 - 27 February 2024

    Abstract In recent years, frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security. This paper presents a novel intrusion detection system consisting of a data preprocessing stage and a deep learning model for accurately identifying network attacks. We have proposed four deep neural network models, which are constructed using architectures such as Convolutional Neural Networks (CNN), Bi-directional Long Short-Term Memory (BiLSTM), Bidirectional Gate Recurrent Unit (BiGRU), and Attention mechanism. These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the More >

  • Open Access

    REVIEW

    AI Fairness–From Machine Learning to Federated Learning

    Lalit Mohan Patnaik1,5, Wenfeng Wang2,3,4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1203-1215, 2024, DOI:10.32604/cmes.2023.029451 - 29 January 2024

    Abstract This article reviews the theory of fairness in AI–from machine learning to federated learning, where the constraints on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to ensure fairness. The privacy worries induce the data unfairness and hence, the biases in the datasets for evaluating AI fairness are unavoidable. The imbalance between algorithms’ utility and humanization More >

Displaying 1-10 on page 1 of 60. Per Page