Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval

    Vidit Kumar1,*, Hemant Petwal2, Ajay Krishan Gairola1, Pareshwar Prasad Barmola1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2711-2724, 2023, DOI:10.32604/csse.2023.032047 - 03 April 2023

    Abstract Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image. The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered, and dissimilar images are separated in the low embedding space. Previous works primarily focused on defining local structure loss functions like triplet loss, pairwise loss, etc. However, training via these approaches takes a long training time, and they have poor accuracy. Additionally, representations learned through it tend to… More >

  • Open Access

    ARTICLE

    Image Representations of Numerical Simulations for Training Neural Networks

    Yiming Zhang1,*, Zhiran Gao1, Xueya Wang1, Qi Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 821-833, 2023, DOI:10.32604/cmes.2022.022088 - 31 August 2022

    Abstract A large amount of data can partly assure good fitting quality for the trained neural networks. When the quantity of experimental or on-site monitoring data is commonly insufficient and the quality is difficult to control in engineering practice, numerical simulations can provide a large amount of controlled high quality data. Once the neural networks are trained by such data, they can be used for predicting the properties/responses of the engineering objects instantly, saving the further computing efforts of simulation tools. Correspondingly, a strategy for efficiently transferring the input and output data used and obtained in More >

Displaying 1-10 on page 1 of 2. Per Page