Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Phenotypic Image Recognition of Asparagus Stem Blight Based on Improved YOLOv8

    Shunshun Ji, Jiajun Sun, Chao Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4017-4029, 2024, DOI:10.32604/cmc.2024.055038 - 12 September 2024

    Abstract Asparagus stem blight, also known as “asparagus cancer”, is a serious plant disease with a regional distribution. The widespread occurrence of the disease has had a negative impact on the yield and quality of asparagus and has become one of the main problems threatening asparagus production. To improve the ability to accurately identify and localize phenotypic lesions of stem blight in asparagus and to enhance the accuracy of the test, a YOLOv8-CBAM detection algorithm for asparagus stem blight based on YOLOv8 was proposed. The algorithm aims to achieve rapid detection of phenotypic images of asparagus… More >

  • Open Access

    ARTICLE

    Multi-Label Image Classification Based on Object Detection and Dynamic Graph Convolutional Networks

    Xiaoyu Liu, Yong Hu*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4413-4432, 2024, DOI:10.32604/cmc.2024.053938 - 12 September 2024

    Abstract Multi-label image classification is recognized as an important task within the field of computer vision, a discipline that has experienced a significant escalation in research endeavors in recent years. The widespread adoption of convolutional neural networks (CNNs) has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification. However, in multi-label image classification tasks, it is crucial to consider the correlation between labels. In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features, many existing studies use graph convolutional networks (GCN) for… More >

  • Open Access

    ARTICLE

    Attention Guided Food Recognition via Multi-Stage Local Feature Fusion

    Gonghui Deng, Dunzhi Wu, Weizhen Chen*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1985-2003, 2024, DOI:10.32604/cmc.2024.052174 - 15 August 2024

    Abstract The task of food image recognition, a nuanced subset of fine-grained image recognition, grapples with substantial intra-class variation and minimal inter-class differences. These challenges are compounded by the irregular and multi-scale nature of food images. Addressing these complexities, our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion, grounded in the ConvNeXt architecture. Our model employs hybrid attention (HA) mechanisms to pinpoint critical discriminative regions within images, substantially mitigating the influence of background noise. Furthermore, it introduces a multi-stage local fusion (MSLF) module, fostering long-distance dependencies between feature maps at… More >

  • Open Access

    ARTICLE

    Squeeze and Excitation Convolution with Shortcut for Complex Plasma Image Recognition

    Baoxia Li1, Wenzhuo Chen1, Xiaojiang Tang1, Shaohuang Bian1, Yang Liu2, Junwei Guo2, Dan Zhang2, Feng Huang2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2221-2236, 2024, DOI:10.32604/cmc.2024.049862 - 15 August 2024

    Abstract Complex plasma widely exists in thin film deposition, material surface modification, and waste gas treatment in industrial plasma processes. During complex plasma discharge, the configuration, distribution, and size of particles, as well as the discharge glow, strongly depend on discharge parameters. However, traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy, time-consuming and high requirement of instruments. To solve these problems, by combining the two mechanisms of attention mechanism (strengthening the extraction of the channel feature) and shortcut connection (enabling the input information to be directly… More >

  • Open Access

    ARTICLE

    Low-Brightness Object Recognition Based on Deep Learning

    Shu-Yin Chiang*, Ting-Yu Lin

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1757-1773, 2024, DOI:10.32604/cmc.2024.049477 - 15 May 2024

    Abstract This research focuses on addressing the challenges associated with image detection in low-light environments, particularly by applying artificial intelligence techniques to machine vision and object recognition systems. The primary goal is to tackle issues related to recognizing objects with low brightness levels. In this study, the Intel RealSense Lidar Camera L515 is used to simultaneously capture color information and 16-bit depth information images. The detection scenarios are categorized into normal brightness and low brightness situations. When the system determines a normal brightness environment, normal brightness images are recognized using deep learning methods. In low-brightness situations,… More >

  • Open Access

    ARTICLE

    Braille Character Segmentation Algorithm Based on Gaussian Diffusion

    Zezheng Meng, Zefeng Cai, Jie Feng*, Hanjie Ma, Haixiang Zhang, Shaohua Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1481-1496, 2024, DOI:10.32604/cmc.2024.048002 - 25 April 2024

    Abstract Optical braille recognition methods typically employ existing target detection models or segmentation models for the direct detection and recognition of braille characters in original braille images. However, these methods need improvement in accuracy and generalizability, especially in densely dotted braille image environments. This paper presents a two-stage braille recognition framework. The first stage is a braille dot detection algorithm based on Gaussian diffusion, targeting Gaussian heatmaps generated by the convex dots in braille images. This is applied to the detection of convex dots in double-sided braille, achieving high accuracy in determining the central coordinates of More >

  • Open Access

    REVIEW

    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101 - 26 March 2024

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and… More >

  • Open Access

    ARTICLE

    Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules

    Yongcan Zhu1,2, Jiawen Wang1, Ye Zhang1,2, Long Zhao1, Botao Jiang1, Xinbo Huang1,*

    Energy Engineering, Vol.121, No.4, pp. 895-911, 2024, DOI:10.32604/ee.2023.041002 - 26 March 2024

    Abstract The accumulation of snow and ice on PV modules can have a detrimental impact on power generation, leading to reduced efficiency for prolonged periods. Thus, it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules. To address this issue, the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images. Furthermore, the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules, allowing for the establishment… More >

  • Open Access

    ARTICLE

    Adaptive Segmentation for Unconstrained Iris Recognition

    Mustafa AlRifaee1, Sally Almanasra2,*, Adnan Hnaif3, Ahmad Althunibat3, Mohammad Abdallah3, Thamer Alrawashdeh3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1591-1609, 2024, DOI:10.32604/cmc.2023.043520 - 27 February 2024

    Abstract In standard iris recognition systems, a cooperative imaging framework is employed that includes a light source with a near-infrared wavelength to reveal iris texture, look-and-stare constraints, and a close distance requirement to the capture device. When these conditions are relaxed, the system’s performance significantly deteriorates due to segmentation and feature extraction problems. Herein, a novel segmentation algorithm is proposed to correctly detect the pupil and limbus boundaries of iris images captured in unconstrained environments. First, the algorithm scans the whole iris image in the Hue Saturation Value (HSV) color space for local maxima to detect… More >

  • Open Access

    REVIEW

    A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests

    Xiaozhong Yu1,2,*, Jinhua Zheng1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 197-225, 2024, DOI:10.32604/cmc.2023.043943 - 30 January 2024

    Abstract In rice production, the prevention and management of pests and diseases have always received special attention. Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep learning technology has been employed to detect and identify rice diseases and pests. This paper introduces common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods according to More >

Displaying 1-10 on page 1 of 27. Per Page