Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Convolution-Transformer for Image Feature Extraction

    Lirong Yin1, Lei Wang1, Siyu Lu2,*, Ruiyang Wang2, Youshuai Yang2, Bo Yang2, Shan Liu2, Ahmed AlSanad3, Salman A. AlQahtani3, Zhengtong Yin4, Xiaolu Li5, Xiaobing Chen6, Wenfeng Zheng3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 87-106, 2024, DOI:10.32604/cmes.2024.051083 - 20 August 2024

    Abstract This study addresses the limitations of Transformer models in image feature extraction, particularly their lack of inductive bias for visual structures. Compared to Convolutional Neural Networks (CNNs), the Transformers are more sensitive to different hyperparameters of optimizers, which leads to a lack of stability and slow convergence. To tackle these challenges, we propose the Convolution-based Efficient Transformer Image Feature Extraction Network (CEFormer) as an enhancement of the Transformer architecture. Our model incorporates E-Attention, depthwise separable convolution, and dilated convolution to introduce crucial inductive biases, such as translation invariance, locality, and scale invariance, into the Transformer… More >

  • Open Access

    ARTICLE

    New Fragile Watermarking Technique to Identify Inserted Video Objects Using H.264 and Color Features

    Raheem Ogla1,*, Eman Shakar Mahmood1, Rasha I. Ahmed1, Abdul Monem S. Rahma2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3075-3096, 2023, DOI:10.32604/cmc.2023.039818 - 08 October 2023

    Abstract The transmission of video content over a network raises various issues relating to copyright authenticity, ethics, legality, and privacy. The protection of copyrighted video content is a significant issue in the video industry, and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media. However, there are still many unresolved challenges. This paper aims to address those challenges by proposing a new technique for detecting moving objects in digital videos, which can help prove the credibility of video content by detecting any fake… More >

  • Open Access

    ARTICLE

    Improved Blending Attention Mechanism in Visual Question Answering

    Siyu Lu1, Yueming Ding1, Zhengtong Yin2, Mingzhe Liu3,*, Xuan Liu4, Wenfeng Zheng1,*, Lirong Yin5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1149-1161, 2023, DOI:10.32604/csse.2023.038598 - 26 May 2023

    Abstract Visual question answering (VQA) has attracted more and more attention in computer vision and natural language processing. Scholars are committed to studying how to better integrate image features and text features to achieve better results in VQA tasks. Analysis of all features may cause information redundancy and heavy computational burden. Attention mechanism is a wise way to solve this problem. However, using single attention mechanism may cause incomplete concern of features. This paper improves the attention mechanism method and proposes a hybrid attention mechanism that combines the spatial attention mechanism method and the channel attention More >

  • Open Access

    ARTICLE

    Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval

    Vidit Kumar1,*, Hemant Petwal2, Ajay Krishan Gairola1, Pareshwar Prasad Barmola1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2711-2724, 2023, DOI:10.32604/csse.2023.032047 - 03 April 2023

    Abstract Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image. The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered, and dissimilar images are separated in the low embedding space. Previous works primarily focused on defining local structure loss functions like triplet loss, pairwise loss, etc. However, training via these approaches takes a long training time, and they have poor accuracy. Additionally, representations learned through it tend to… More >

  • Open Access

    ARTICLE

    Applying Wide & Deep Learning Model for Android Malware Classification

    Le Duc Thuan1,2,*, Pham Van Huong2, Hoang Van Hiep1, Nguyen Kim Khanh1

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2741-2759, 2023, DOI:10.32604/csse.2023.033420 - 21 December 2022

    Abstract Android malware has exploded in popularity in recent years, due to the platform’s dominance of the mobile market. With the advancement of deep learning technology, numerous deep learning-based works have been proposed for the classification of Android malware. Deep learning technology is designed to handle a large amount of raw and continuous data, such as image content data. However, it is incompatible with discrete features, i.e., features gathered from multiple sources. Furthermore, if the feature set is already well-extracted and sparsely distributed, this technology is less effective than traditional machine learning. On the other hand,… More >

  • Open Access

    ARTICLE

    Machine Learning-based Detection and Classification of Walnut Fungi Diseases

    Muhammad Alyas Khan1, Mushtaq Ali1, Mohsin Shah2, Toqeer Mahmood3, Muneer Ahmad4, NZ Jhanjhi5, Mohammad Arif Sobhan Bhuiyan6,*, Emad Sami Jaha7

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 771-785, 2021, DOI:10.32604/iasc.2021.018039 - 20 August 2021

    Abstract Fungi disease affects walnut trees worldwide because it damages the canopies of the trees and can easily spread to neighboring trees, resulting in low quality and less yield. The fungal disease can be treated relatively easily, and the main goal is preventing its spread by automatic early-detection systems. Recently, machine learning techniques have achieved promising results in many applications in the agricultural field, including plant disease detection. In this paper, an automatic machine learning-based detection method for identifying walnut diseases is proposed. The proposed method first resizes a leaf’s input image and pre-processes it using… More >

  • Open Access

    ARTICLE

    The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection

    Lei Feng1,2, Haibin Li1,*, Yakun Gao1, Yakun Zhang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 831-839, 2020, DOI:10.32604/iasc.2020.010117

    Abstract In the paper, we apply the sparse reconstruction algorithm of improved background dictionary to saliency detection. Firstly, after super-pixel segmentation, two bottom features are extracted: the color information of LAB and the texture features of the image by Gabor filter. Secondly, the convex hull theory is used to remove object region in boundary region, and K-means clustering algorithm is used to continue to simplify the background dictionary. Finally, the saliency map is obtained by calculating the reconstruction error. Compared with the mainstream algorithms, the accuracy and efficiency of this algorithm are better than those of More >

  • Open Access

    ARTICLE

    Image Feature Computation in Encrypted Domain Based on Mean Value

    Xiangshu Ou1, Mingfang Jiang2,*, Shuai Li1, Yao Bai1

    Journal of Cyber Security, Vol.2, No.3, pp. 123-130, 2020, DOI:10.32604/jcs.2020.09703 - 14 September 2020

    Abstract In smart environments, more and more teaching data sources are uploaded to remote cloud centers which promote the development of the smart campus. The outsourcing of massive teaching data can reduce storage burden and computational cost, but causes some privacy concerns because those teaching data (especially personal image data) may contain personal private information. In this paper, a privacy-preserving image feature extraction algorithm is proposed by using mean value features. Clients use block scrambling and chaotic map to encrypt original images before uploading to the remote servers. Cloud servers can directly extract image mean value More >

Displaying 1-10 on page 1 of 8. Per Page