Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    MRFNet: A Progressive Residual Fusion Network for Blind Multiscale Image Deblurring

    Wang Zhang1,#, Haozhuo Cao2,#, Qiangqiang Yao1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072948 - 12 January 2026

    Abstract Recent advances in deep learning have significantly improved image deblurring; however, existing approaches still suffer from limited global context modeling, inadequate detail restoration, and poor texture or edge perception, especially under complex dynamic blur. To address these challenges, we propose the Multi-Resolution Fusion Network (MRFNet), a blind multi-scale deblurring framework that integrates progressive residual connectivity for hierarchical feature fusion. The network employs a three-stage design: (1) TransformerBlocks capture long-range dependencies and reconstruct coarse global structures; (2) Nonlinear Activation Free Blocks (NAFBlocks) enhance local detail representation and mid-level feature fusion; and (3) an optimized residual subnetwork… More >

  • Open Access

    ARTICLE

    DNEFNET: Denoising and Frequency Domain Feature Enhancement Event Fusion Network for Image Deblurring

    Kangkang Zhao1, Yaojie Chen1,*, Jianbo Li2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 745-762, 2025, DOI:10.32604/cmc.2025.063906 - 09 June 2025

    Abstract Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects. Event cameras, as high temporal resolution bionic cameras, record intensity changes in an asynchronous manner, and their recorded high temporal resolution information can effectively solve the problem of time information loss in motion blur. Existing event-based deblurring methods still face challenges when facing high-speed moving objects. We conducted an in-depth study of the imaging principle of event cameras. We found that the event stream contains excessive noise. The valid information is sparse. Invalid event features hinder the expression of valid features due to… More >

  • Open Access

    ARTICLE

    Blur-Deblur Algorithm for Pressure-Sensitive Paint Image Based on Variable Attention Convolution

    Ruizhe Yu1, Tingrui Yue3, Lei Liang2,3,*, Zhisheng Gao1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5239-5256, 2025, DOI:10.32604/cmc.2025.059077 - 06 March 2025

    Abstract In the PSP (Pressure-Sensitive Paint), image deblurring is essential due to factors such as prolonged camera exposure times and high model velocities, which can lead to significant image blurring. Conventional deblurring methods applied to PSP images often suffer from limited accuracy and require extensive computational resources. To address these issues, this study proposes a deep learning-based approach tailored for PSP image deblurring. Considering that PSP applications primarily involve the accurate pressure measurements of complex geometries, the images captured under such conditions exhibit distinctive non-uniform motion blur, presenting challenges for standard deep learning models utilizing convolutional… More >

  • Open Access

    ARTICLE

    MIDNet: Deblurring Network for Material Microstructure Images

    Jiaxiang Wang1, Zhengyi Li1, Peng Shi1, Hongying Yu2, Dongbai Sun1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1187-1204, 2024, DOI:10.32604/cmc.2024.046929 - 25 April 2024

    Abstract Scanning electron microscopy (SEM) is a crucial tool in the field of materials science, providing valuable insights into the microstructural characteristics of materials. Unfortunately, SEM images often suffer from blurriness caused by improper hardware calibration or imaging automation errors, which present challenges in analyzing and interpreting material characteristics. Consequently, rectifying the blurring of these images assumes paramount significance to enable subsequent analysis. To address this issue, we introduce a Material Images Deblurring Network (MIDNet) built upon the foundation of the Nonlinear Activation Free Network (NAFNet). MIDNet is meticulously tailored to address the blurring in images… More >

  • Open Access

    ARTICLE

    Image Deblurring of Video Surveillance System in Rainy Environment

    Jinxing Niu1, *, Yajie Jiang1, Yayun Fu1, Tao Zhang1, Nicola Masini2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 807-816, 2020, DOI:10.32604/cmc.2020.011044 - 23 July 2020

    Abstract Video surveillance system is used in various fields such as transportation and social life. The bad weather can lead to the degradation of the video surveillance image quality. In rainy environment, the raindrops and the background are mixed, which lead to make the image degradation, so the removal of the raindrops has great significance for image restoration. In this article, after analyzing the inter-frame difference method in detecting and removing raindrops, a background difference method is proposed based on Gaussian model. In this method, the raindrop is regarded as a moving object relative to the… More >

Displaying 1-10 on page 1 of 5. Per Page