Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2915-2931, 2023, DOI:10.32604/iasc.2023.034165
Abstract Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions. It is challenging to determine vegetation using traditional map classification approaches. The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties. It is more demandable to determine the multiple spectral analyses for improving the accuracy of vegetation mapping through remotely sensed images. The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping. The architecture comprises three approaches, feature-based approach, region-based approach, and texture-based approach for classifying the vegetation… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2237-2265, 2023, DOI:10.32604/cmes.2023.025193
Abstract There are two types of methods for image segmentation. One is traditional image processing methods, which are sensitive to details and boundaries, yet fail to recognize semantic information. The other is deep learning methods, which can locate and identify different objects, but boundary identifications are not accurate enough. Both of them cannot generate entire segmentation information. In order to obtain accurate edge detection and semantic information, an Adaptive Boundary and Semantic Composite Segmentation method (ABSCS) is proposed. This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances. It includes adaptively dividing and modifying the… More >
Graphic Abstract
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 2543-2554, 2023, DOI:10.32604/csse.2023.037055
Abstract Specific medical data has limitations in that there are not many numbers and it is not standardized. to solve these limitations, it is necessary to study how to efficiently process these limited amounts of data. In this paper, deep learning methods for automatically determining cardiovascular diseases are described, and an effective preprocessing method for CT images that can be applied to improve the performance of deep learning was conducted. The cardiac CT images include several parts of the body such as the heart, lungs, spine, and ribs. The preprocessing step proposed in this paper divided CT image data into regions… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 1917-1928, 2023, DOI:10.32604/csse.2023.032523
Abstract Colon cancer is the third most commonly diagnosed cancer in the world. Most colon AdenoCArcinoma (ACA) arises from pre-existing benign polyps in the mucosa of the bowel. Thus, detecting benign at the earliest helps reduce the mortality rate. In this work, a Predictive Modeling System (PMS) is developed for the classification of colon cancer using the Horizontal Voting Ensemble (HVE) method. Identifying different patterns in microscopic images is essential to an effective classification system. A twelve-layer deep learning architecture has been developed to extract these patterns. The developed HVE algorithm can increase the system’s performance according to the combined models… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 461-475, 2023, DOI:10.32604/cmc.2023.035672
Abstract The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is easily accessible to people around… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 927-942, 2023, DOI:10.32604/cmc.2023.035143
Abstract Diabetic Retinopathy (DR) is a serious hazard that can result in irreversible blindness if not addressed in a timely manner. Hence, numerous techniques have been proposed for the accurate and timely detection of this disease. Out of these, Deep Learning (DL) and Computer Vision (CV) methods for multiclass categorization of color fundus images diagnosed with Diabetic Retinopathy have sparked considerable attention. In this paper, we attempt to develop an extended ResNet152V2 architecture-based Deep Learning model, named ResNet2.0 to aid the timely detection of DR. The APTOS-2019 dataset was used to train the model. This consists of 3662 fundus images belonging… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 831-844, 2023, DOI:10.32604/cmc.2023.033700
Abstract Image processing networks have gained great success in many fields, and thus the issue of copyright protection for image processing networks has become a focus of attention. Model watermarking techniques are widely used in model copyright protection, but there are two challenges: (1) designing universal trigger sample watermarking for different network models is still a challenge; (2) existing methods of copyright protection based on trigger s watermarking are difficult to resist forgery attacks. In this work, we propose a dual model watermarking framework for copyright protection in image processing networks. The trigger sample watermark is embedded in the training process… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2265-2281, 2023, DOI:10.32604/cmc.2023.032429
Abstract Biomedical image processing is finding useful in healthcare sector for the investigation, enhancement, and display of images gathered by distinct imaging technologies. Diabetic retinopathy (DR) is an illness caused by diabetes complications and leads to irreversible injury to the retina blood vessels. Retinal vessel segmentation techniques are a basic element of automated retinal disease screening system. In this view, this study presents a novel blood vessel segmentation with deep learning based classification (BVS-DLC) model for DR diagnosis using retinal fundus images. The proposed BVS-DLC model involves different stages of operations such as preprocessing, segmentation, feature extraction, and classification. Primarily, the… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2247-2263, 2023, DOI:10.32604/cmc.2023.027882
Abstract Food processing companies pursue the distribution of ingredients that were packaged according to a certain weight. Particularly, foods like fish are highly demanded and supplied. However, despite the high quantity of fish to be supplied, most seafood processing companies have yet to install automation equipment. Such absence of automation equipment for seafood processing incurs a considerable cost regarding labor force, economy, and time. Moreover, workers responsible for fish processing are exposed to risks because fish processing tasks require the use of dangerous tools, such as power saws or knives. To solve these problems observed in the fish processing field, this… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.1, pp. 287-302, 2023, DOI:10.32604/csse.2023.035311
Abstract Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful; thus, catching it early is crucial. Medical physicians’ time is limited in outdoor situations due to many patients; therefore, automated systems can be a rescue. The input images from the X-ray equipment are also highly unpredictable due to variances in radiologists’ experience. Therefore, radiologists require an automated system that can swiftly and accurately detect pneumonic lungs from chest x-rays. In medical classifications, deep convolution neural networks are commonly used. This research aims to use deep pre-trained transfer learning models to accurately categorize CXR images into… More >