Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,014)
  • Open Access

    ARTICLE

    Fault Diagnosis of Industrial Motors with Extremely Similar Thermal Images Based on Deep Learning-Related Classification Approaches

    Hong Zhang1,*, Qi Wang1, Lixing Chen1, Jiaming Zhou1, Haijian Shao2

    Energy Engineering, Vol.120, No.8, pp. 1867-1883, 2023, DOI:10.32604/ee.2023.028453

    Abstract Induction motors (IMs) typically fail due to the rate of stator short-circuits. Because of the similarity of the thermal images produced by various instances of short-circuit and the minor interclass distinctions between categories, non-destructive fault detection is universally perceived as a difficult issue. This paper adopts the deep learning model combined with feature fusion methods based on the image’s low-level features with higher resolution and more position and details and high-level features with more semantic information to develop a high-accuracy classification-detection approach for the fault diagnosis of IMs. Based on the publicly available thermal images (IRT) dataset related to condition… More > Graphic Abstract

    Fault Diagnosis of Industrial Motors with Extremely Similar Thermal Images Based on Deep Learning-Related Classification Approaches

  • Open Access

    ARTICLE

    Shadow detection and correction using a combined 3D GIS and image processing approach

    Safa Ridene1 , Reda Yaagoubi1, Imane Sebari1, Audrey Alajouanine2

    Revue Internationale de Géomatique, Vol.29, No.3, pp. 241-253, 2019, DOI:10.3166/rig.2019.00091

    Abstract While shadow can give useful information about size and shape of objects, it can pose problems in feature detection and object detection, thereby, it represents one of the major perturbator phenomenons frequently occurring on images and unfortunately, it is inevitable. “Shadows may lead to the failure of image analysis processes and also cause a poor quality of information which in turn leads to problems in implementation of algorithms.” (Mahajan and Bajpayee, 2015). It also affects multiple image analysis applications, whereby shadow cast by buildings deteriorate the spectral values of the surfaces. Therefore, its presence causes a deterioration in the visual… More >

  • Open Access

    ARTICLE

    Fuzzy Rule-Based Model to Train Videos in Video Surveillance System

    A. Manju1, A. Revathi2, M. Arivukarasi1, S. Hariharan3, V. Umarani4, Shih-Yu Chen5,*, Jin Wang6

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 905-920, 2023, DOI:10.32604/iasc.2023.038444

    Abstract With the proliferation of the internet, big data continues to grow exponentially, and video has become the largest source. Video big data introduces many technological challenges, including compression, storage, transmission, analysis, and recognition. The increase in the number of multimedia resources has brought an urgent need to develop intelligent methods to organize and process them. The integration between Semantic link Networks and multimedia resources provides a new prospect for organizing them with their semantics. The tags and surrounding texts of multimedia resources are used to measure their semantic association. Two evaluation methods including clustering and retrieval are performed to measure… More >

  • Open Access

    ARTICLE

    HIUNET: A Hybrid Inception U-Net for Diagnosis of Diabetic Retinopathy

    S. Deva Kumar, S. Venkatramaphanikumar*, K. Venkata Krishna Kishore

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1013-1032, 2023, DOI:10.32604/iasc.2023.038165

    Abstract Type 2 diabetes patients often suffer from microvascular complications of diabetes. These complications, in turn, often lead to vision impairment. Diabetic Retinopathy (DR) detection in its early stage can rescue people from long-term complications that could lead to permanent blindness. In this study, we propose a complex deep convolutional neural network architecture with an inception module for automated diagnosis of DR. The proposed novel Hybrid Inception U-Net (HIUNET) comprises various inception modules connected in the U-Net fashion using activation maximization and filter map to produce the image mask. First, inception blocks were used to enlarge the model’s width by substituting… More >

  • Open Access

    ARTICLE

    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote sensing images (called DGCN hereinafter),… More >

  • Open Access

    ARTICLE

    FSA-Net: A Cost-efficient Face Swapping Attention Network with Occlusion-Aware Normalization

    Zhipeng Bin1, Huihuang Zhao1,2,*, Xiaoman Liang1,2, Wenli Chen1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 971-983, 2023, DOI:10.32604/iasc.2023.037270

    Abstract The main challenges in face swapping are the preservation and adaptive superimposition of attributes of two images. In this study, the Face Swapping Attention Network (FSA-Net) is proposed to generate photorealistic face swapping. The existing face-swapping methods ignore the blending attributes or mismatch the facial keypoint (cheek, mouth, eye, nose, etc.), which causes artifacts and makes the generated face silhouette non-realistic. To address this problem, a novel reinforced multi-aware attention module, referred to as RMAA, is proposed for handling facial fusion and expression occlusion flaws. The framework includes two stages. In the first stage, a novel attribute encoder is proposed… More >

  • Open Access

    ARTICLE

    Detection Algorithm of Knee Osteoarthritis Based on Magnetic Resonance Images

    Xin Wang*, Shuang Liu, Chang-Cai Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 221-234, 2023, DOI:10.32604/iasc.2023.036766

    Abstract Knee osteoarthritis (OA) is a common disease that impairs knee function and causes pain. Currently, studies on the detection of knee OA mainly focus on X-ray images, but X-ray images are insensitive to the changes in knee OA in the early stage. Since magnetic resonance (MR) imaging can observe the early features of knee OA, the knee OA detection algorithm based on MR image is innovatively proposed to judge whether knee OA is suffered. Firstly, the knee MR images are preprocessed before training, including a region of interest clipping, slice selection, and data augmentation. Then the data set was divided… More >

  • Open Access

    ARTICLE

    Baseline Isolated Printed Text Image Database for Pashto Script Recognition

    Arfa Siddiqu, Abdul Basit*, Waheed Noor, Muhammad Asfandyar Khan, M. Saeed H. Kakar, Azam Khan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 875-885, 2023, DOI:10.32604/iasc.2023.036426

    Abstract The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages. Moreover, the absence of a standard publicly available dataset for several low-resource languages, including the Pashto language remained a hurdle in the advancement of language processing. Realizing that, a clean dataset is the fundamental and core requirement of character recognition, this research begins with dataset generation and aims at a system capable of complete language understanding. Keeping in view the complete and full autonomous recognition of the cursive… More >

  • Open Access

    ARTICLE

    Cancer Regions in Mammogram Images Using ANFIS Classifier Based Probability Histogram Segmentation Algorithm

    V. Swetha*, G. Vadivu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 707-726, 2023, DOI:10.32604/iasc.2023.035483

    Abstract Every year, the number of women affected by breast tumors is increasing worldwide. Hence, detecting and segmenting the cancer regions in mammogram images is important to prevent death in women patients due to breast cancer. The conventional methods obtained low sensitivity and specificity with cancer region segmentation accuracy. The high-resolution standard mammogram images were supported by conventional methods as one of the main drawbacks. The conventional methods mostly segmented the cancer regions in mammogram images concerning their exterior pixel boundaries. These drawbacks are resolved by the proposed cancer region detection methods stated in this paper. The mammogram images are classified… More >

  • Open Access

    ARTICLE

    Simulated Annealing with Deep Learning Based Tongue Image Analysis for Heart Disease Diagnosis

    S. Sivasubramaniam*, S. P. Balamurugan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 111-126, 2023, DOI:10.32604/iasc.2023.035199

    Abstract Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine, for example, traditional Chinese medicine (TCM), Japanese traditional herbal medicine, and traditional Korean medicine (TKM). The diagnosis procedure is mainly based on the expert's knowledge depending upon the visual inspection comprising color, substance, coating, form, and motion of the tongue. But conventional tongue diagnosis has limitations since the procedure is inconsistent and subjective. Therefore, computer-aided tongue analyses have a greater potential to present objective and more consistent health assessments. This manuscript introduces a novel Simulated Annealing with Transfer Learning… More >

Displaying 1-10 on page 1 of 1014. Per Page  

Share Link