Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Through-Wall Multihuman Activity Recognition Based on MIMO Radar

    Changlong Wang1, Jiawei Jiang1, Chong Han1,2,*, Hengyi Ren3, Lijuan Sun1,2, Jian Guo1,2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4537-4550, 2025, DOI:10.32604/cmc.2025.063295 - 19 May 2025

    Abstract Existing through-wall human activity recognition methods often rely on Doppler information or reflective signal characteristics of the human body. However, static individuals, lacking prominent motion features, do not generate Doppler information. Moreover, radar signals experience significant attenuation due to absorption and scattering effects as they penetrate walls, limiting recognition performance. To address these challenges, this study proposes a novel through-wall human activity recognition method based on MIMO radar. Utilizing a MIMO radar operating at 1–2 GHz, we capture activity data of individuals through walls and process it into range-angle maps to represent activity features. To… More >

  • Open Access

    PROCEEDINGS

    iHUMAN: Syngeneic, Vascularised, Innervated, Standard Live Human Platform for Science and Industry

    Tong Cao1,2,3,*, Xiangyu Hu1,3, Yusu Zhang1,2, Lihong Wang1,2, Dandan Lu1,3, Jinhua Wu1,2, Chenyu Qiu1,2, Siyun Lei1,2, Qian Luo1,2, Jie Wang1,2, Jing Zhou1,3, Yang Cheng1,2, Jinpeng Xie1,2, Ting Kou1,2, Jue Wang1,3, Lei Xu1,2, Xinlei Wei1, Gu Cheng1,3, Xin Fu1, Shukuan Ling1, Yihuai Pan3, Wujun Geng1,4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012775

    Abstract Government authorities, academies, research institutes and industries are presently hindered by a lack of functional, healthy and standardized human platforms of cells, tissues, and organs, predominantly using costly live animal models and cells of low human relevance. Existing models of live animals or immortalized cell lines of either animal or human origin, often poorly reflect human physiology. Primary human cell cultures are difficult to procure in sufficient quantity and can be prone to much inter-batch variability, depending on the cell source. By contrast, self-renewable, genetically healthy and single-sourced human pluripotent stem cells (PSCs) exhibit enhanced… More >

Displaying 1-10 on page 1 of 2. Per Page