Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

    Ruochen Wang1,#, Jianjun Dong2,#, Lishan Jin3, Yuyan Sun3, Taogetao Baoyin2, Xiumei Wang*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 387-411, 2024, DOI:10.32604/phyton.2024.047573 - 27 February 2024

    Abstract Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Trees Disease Recognition and Classification Using Hyperspectral Data

    Uzair Aslam Bhatti1,*, Sibghat Ullah Bazai2, Shumaila Hussain1, Shariqa Fakhar3, Chin Soon Ku4,*, Shah Marjan5, Por Lip Yee6, Liu Jing1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 681-697, 2023, DOI:10.32604/cmc.2023.037958 - 31 October 2023

    Abstract Crop diseases have a significant impact on plant growth and can lead to reduced yields. Traditional methods of disease detection rely on the expertise of plant protection experts, which can be subjective and dependent on individual experience and knowledge. To address this, the use of digital image recognition technology and deep learning algorithms has emerged as a promising approach for automating plant disease identification. In this paper, we propose a novel approach that utilizes a convolutional neural network (CNN) model in conjunction with Inception v3 to identify plant leaf diseases. The research focuses on developing… More >

  • Open Access

    ARTICLE

    3D-CNNHSR: A 3-Dimensional Convolutional Neural Network for Hyperspectral Super-Resolution

    Mohd Anul Haq1,*, Siwar Ben Hadj Hassine2, Sharaf J. Malebary3, Hakeem A. Othman4, Elsayed M. Tag-Eldin5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2689-2705, 2023, DOI:10.32604/csse.2023.039904 - 28 July 2023

    Abstract Hyperspectral images can easily discriminate different materials due to their fine spectral resolution. However, obtaining a hyperspectral image (HSI) with a high spatial resolution is still a challenge as we are limited by the high computing requirements. The spatial resolution of HSI can be enhanced by utilizing Deep Learning (DL) based Super-resolution (SR). A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI, without losing the spectral content. The 3D-CNNHSR model was tested for the Hyperion HSI. The pre-processing of the HSI was done before applying the SR model so… More >

  • Open Access

    ARTICLE

    Retrieval of Winter Wheat Canopy Carotenoid Content with Ground- and Airborne-Based Hyperspectral Data

    Ting Cui, Xianfeng Zhou*, Yufeng Huang, Yanting Guo, Yunrui Lin, Leyi Song, Jingcheng Zhang

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2633-2648, 2023, DOI:10.32604/phyton.2023.029259 - 28 July 2023

    Abstract Accurate assessment of canopy carotenoid content (CCx+cC) in crops is central to monitor physiological conditions in plants and vegetation stress, and consequently supporting agronomic decisions. However, due to the overlap of absorption peaks of carotenoid (Cx+c) and chlorophyll (Ca), accurate estimation of carotenoid using reflectance where carotenoid absorb is challenging. The objective of present study was to assess CCx+cC in winter wheat (Triticum aestivum L.) with ground- and aircraft-based hyperspectral measurements in the visible and near-infrared spectrum. In-situ hyperspectral reflectance were measured and airborne hyperspectral data were acquired during major growth stages of winter wheat in five consecutive… More >

Displaying 1-10 on page 1 of 4. Per Page