Zhenyu Qian1, Yizhang Jiang1, Zhou Hong1, Lijun Huang2, Fengda Li3, KhinWee Lai6, Kaijian Xia4,5,6,*
CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4741-4762, 2024, DOI:10.32604/cmc.2024.050920
- 20 June 2024
Abstract In this paper, we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering (MAS-DSC) algorithm, aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data, particularly in the field of medical imaging. Traditional deep subspace clustering algorithms, which are mostly unsupervised, are limited in their ability to effectively utilize the inherent prior knowledge in medical images. Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process, thereby enhancing the discriminative power of the feature representations. Additionally, the multi-scale feature extraction… More >
Graphic Abstract