Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    SURROGATE-BASED OPTIMIZATION OF THERMAL DAMAGE TO LIVING BIOLOGICAL TISSUES BY LASER IRRADIATION

    Nazia Afrina , Yuwen Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.27

    Abstract The surrogate-based analysis and optimization of thermal damage in living biological tissue by laser irradiation are discussed in this paper. Latin Hypercube Sampling (LHS) and Response Surface Model (RSM) are applied to study the surrogate-based optimization of thermal damage in tissue using a generalized dual-phase lag model. Response value of high temperature as a function of input variables and the relationship of maximum temperature and thermal damage as a function of input variables are investigated. Comparisons of SBO model and simulation results for different sample sizes are examined. The results show that every input variable individually has quadratic response to… More >

  • Open Access

    ARTICLE

    A Fault-Handling Method for the Hamiltonian Cycle in the Hypercube Topology

    Adnan A. Hnaif*, Abdelfatah A. Tamimi, Ayman M. Abdalla, Iqbal Jebril

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 505-519, 2021, DOI:10.32604/cmc.2021.016123

    Abstract Many routing protocols, such as distance vector and link-state protocols are used for finding the best paths in a network. To find the path between the source and destination nodes where every node is visited once with no repeats, Hamiltonian and Hypercube routing protocols are often used. Nonetheless, these algorithms are not designed to solve the problem of a node failure, where one or more nodes become faulty. This paper proposes an efficient modified Fault-free Hamiltonian Cycle based on the Hypercube Topology (FHCHT) to perform a connection between nodes when one or more nodes become faulty. FHCHT can be applied… More >

  • Open Access

    ABSTRACT

    Probabilistic Floor Response Spectrum of Nonlinear Nuclear Power Plant Structure using Latin Hypercube Sampling Method

    Heekun Ju, Hyung-Jo Jung*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 7-7, 2019, DOI:10.32604/icces.2019.05846

    Abstract Latin hypercube sampling (LHS) is widely applied to estimate a probabilistic floor response spectrum (FRS) of nonlinear nuclear power plant (NPP) structure. ASCE 4-16 Standards recommend that the minimum number of simulations should be larger than 30 when using LHS. Although this recommendation is commonly used for the minimum number of the simulation, there is no theoretical background. The variability of the estimations may exist according to the number of the simulation. Stated differently, the minimum number of the simulation may be varied depending on the characteristics of the problem (i.e., problem-dependent). In this context, the required sample size of… More >

  • Open Access

    ARTICLE

    Optimization of Well Position and Sampling Frequency for Groundwater Monitoring and Inverse Identification of Contamination Source Conditions Using Bayes’ Theorem

    Shuangsheng Zhang1,5, Hanhu Liu1, Jing Qiang2,*, Hongze Gao3,*, Diego Galar4, Jing Lin4

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.2, pp. 373-394, 2019, DOI:10.32604/cmes.2019.03825

    Abstract Coupling Bayes’ Theorem with a two-dimensional (2D) groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity (M ), release location ( X0 , Y0) and release time (T0), based on monitoring well data. To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters, a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy. To demonstrate how the model works, an exemplar problem with an instantaneous release of a contaminant in a confined groundwater… More >

  • Open Access

    ARTICLE

    Seismic Vulnerability Analysis of Single-Story Reinforced Concrete Industrial Buildings with Seismic Fortification

    Jieping Liu1, Lingxin Zhang1,*, Haohao Zhang2, Tao Liu1

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 123-142, 2019, DOI:10.32604/sdhm.2019.04486

    Abstract As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China, seismic vulnerability analysis was performed by numerical simulation in this paper. The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters. The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods. Using nonlinear analysis, the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities (SFI) were obtained. The seismic capacity of the factory building was then evaluated. The results showed that, with different designs at… More >

  • Open Access

    ARTICLE

    Approximation of Unit-Hypercubic Infinite Noncooperative Game Via Dimension-Dependent Samplings and Reshaping the Player’s Payoffs into Line Array for the Finite Game Simplification

    Vadim V. Romanuke1

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.2, pp. 113-134, 2015, DOI:10.3970/cmes.2015.108.113

    Abstract The problem of solving infinite noncooperative games approximately is considered. The game may either have solution or have no solution. The existing solution may be unknown as well. Therefore, an approach of obtaining the approximate solution of the infinite noncooperative game on the unit hypercube is suggested. The unit-hypercubic game isomorphism to compact infinite noncooperative games allows to disseminate the approximation approach on a pretty wide class of noncooperative games. The approximation intention is in converting the infinite game into a finite one, whose solution methods are easier rather than solving infinite games. The conversion starts with sampling the players’… More >

  • Open Access

    ARTICLE

    Stochastic Macro Material Properties, Through Direct Stochastic Modeling of Heterogeneous Microstructures with Randomness of Constituent Properties and Topologies, by Using Trefftz Computational Grains (TCG)

    Leiting Dong1,2, Salah H. Gamal3, Satya N. Atluri2,4

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.037.001

    Abstract In this paper, a simple and reliable procedure of stochastic computation is combined with the highly accurate and efficient Trefftz Computational Grains (TCG), for a direct numerical simulation (DNS) of heterogeneous materials with microscopic randomness. Material properties of each material phase, and geometrical properties such as particles sizes and distribution, are considered to be stochastic with either a uniform or normal probabilistic distributions. The objective here is to determine how this microscopic randomness propagates to the macroscopic scale, and affects the stochastic characteristics of macroscopic material properties. Four steps are included in this procedure: (1) using the Latin hypercube sampling,… More >

Displaying 1-10 on page 1 of 7. Per Page