Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Exploration of Waterproofness of Concrete and Alkali-Aggregate Using Hydrophobic Impregnation and Coating

    Shun Kang1, Xun Yuan1, Changwu Liu1,*, Yulin Chen1, Xianliang Zhou1, Haikuan Wu2, Zhiguo Ma3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3521-3538, 2022, DOI:10.32604/jrm.2022.021694

    Abstract Part of the tunnel spoil can not be used for concrete due to alkali-aggregate reaction (AAR). Water is an indispensable condition for AAR, so separating the alkali-aggregate from water is of great benefit to controlling the AAR. This paper investigates the modification of concrete and aggregate by hydrophobic impregnation and organic coating and then evaluates their waterproof and mechanical properties by dynamic contact angle (DCA), ultrasonic wave velocity, scanning electron microscope (SEM), nuclear magnetic resonance (NMR), and so on. For waterproofness, hydrophobic impregnation and organic coating can both improve the waterproofness of concrete and aggregate. The organic coating is suitable… More >

  • Open Access

    ARTICLE

    Mechanical Properties, Biocompatibility and Anti-Bacterial Adhesion Property Evaluation of Silicone-Containing Resin Composite with Different Formulae

    Muzi Liao1,2,#, Hui Tong1,2,#, Xiangya Huang1,2, Fang Liu3, Jingwei He3,*, Sui Mai1,2,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3201-3215, 2022, DOI:10.32604/jrm.2022.022090

    Abstract Novel branched silicone methacrylate was developed. The mechanical and biological properties of the resin system were investigated to select the formula proportion with the best overall performance. The novel silicone-containing monomers were combined with an incremental sequence of glass filler concentrations in commonly used Bis-GMA/TEGDMA (50/50, wt./wt.) dental resin systems. Physicochemical properties, surface properties, antibacterial adhesion effect, anti-biofilm effect, protein adsorption, and cytotoxicity were evaluated. The results showed that BSMs did not affect the double bond conversion of dental resin, but could reduce volumetric shrinkage (p < 0.05). The BSM containing resins can resist protein and bacteria adhesion (S. Mutans)… More >

  • Open Access

    ARTICLE

    Hydrophobic Poplar Prepared via High Voltage Electric Field (HVEF) with Copper as Electrode Plate

    Jianxin Cui1,#, Zehui Ju1,#, Lu Hong2, Biqing Shu1,3, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2907-2919, 2022, DOI:10.32604/jrm.2022.019270

    Abstract In order to improve hydrophobic characteristics which will affect the service performance of fast-growing poplar due to growing bacteria in the humid environment. In this study, a simple method was proposed to treat poplar via the high voltage electric field (HVEF) with copper as the electrode plate. Scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD) and contact angle tester were adopted to evaluate the surface morphology, surface group of poplar, crystallinity and wettability under HVEF. It was found by SEM that a large number of copper particles were uniformly attached to the surface of poplar. In… More >

  • Open Access

    ARTICLE

    An Abrasion Resistant TPU/SH-SiO2 Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications

    Jiakun Shi1, Bizhu Zhang1, Xin Zhou1, Runxian Liu1, Jun Hu1,2,*, Huaan Zheng1, Zhong Chen3,*

    Journal of Renewable Materials, Vol.10, No.5, pp. 1239-1255, 2022, DOI:10.32604/jrm.2022.018045

    Abstract As a passive anti-icing strategy, properly designed superhydrophobic coatings can demonstrate outstanding performances. However, common preparation strategies for superhydrophobic coatings often lead to environmental pollution, high energy-consumption, high-cost and other undesirable issues. Besides, the durability of superhydrophobic coating also plagues its commercial application. In this paper, we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane (TPU) and modified SiO2 particles (SH-SiO2). Both materials are non-toxicity, low-cost, and commercial available. Our methodology has the following advantages: use of minimal amounts of formulation, take the most streamlined technical route, and no waste material. These advantages make… More > Graphic Abstract

    An Abrasion Resistant TPU/SH-SiO<sub>2</sub> Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications

  • Open Access

    ARTICLE

    Experimental Investigation on Hydrophobic Behavior of Carbon Spheres Coated Surface Made from Microplastics

    Peng Liu, Bin Bai, Cui Wang, Yunan Chen, Zhiwei Ge, Wenwen Wei, Hui Jin*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2159-2174, 2021, DOI:10.32604/jrm.2021.016166

    Abstract In this paper, a simple method to plate a hydrophobic coating on the inner surface of a small-scaled tube was proposed, where the coating consisted of carbon microspheres. Three common plastics polystyrene, polycarbonate and polyethylene were used as the feedstocks to be processed in supercritical water in a quartz tubular reactor. After reaction, the contact angle of droplet on the inner surface of the quartz tube was turned out to be over 100°, significantly larger than that of the blank tube 54°. When processing polystyrene in the 750C supercritical water for 10 min, the largest contact angle was obtained, up… More > Graphic Abstract

    Experimental Investigation on Hydrophobic Behavior of Carbon Spheres Coated Surface Made from Microplastics

  • Open Access

    ARTICLE

    Application of Superhydrophobic Surface on Boiling Heat Transfer Characteristics of Nanofluids

    Cong Qi*, Yuxing Wang, Zi Ding, Jianglin Tu, Mengxin Zhu

    Energy Engineering, Vol.118, No.4, pp. 825-852, 2021, DOI:10.32604/EE.2021.014806

    Abstract Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability, and it is widely used in heat exchange engineering. Nanofluids have been used in the direction of enhanced heat transfer for their superior thermophysical property. The wetting, spreading and ripple phenomena of superhydrophobic surfaces widely exist in nature and daily life. It has great application value for engineering technology. In this article, the boiling heat exchange characteristics of nanofluids on superhydrophobic surface are numerically studied. It was found that with the increase of superheating degree,… More >

  • Open Access

    ARTICLE

    Multi-Scale Superhydrophobic Anti-Icing Coating for Wind Turbine Blades

    Jiangyong Bao1, Jianjun He1,*, Biao Chen2, Kaijun Yang1, Jun Jie2, Ruifeng Wang1, Shihao Zhang2

    Energy Engineering, Vol.118, No.4, pp. 947-959, 2021, DOI:10.32604/EE.2021.014535

    Abstract As a surface functional material, super-hydrophobic coating has great application potential in wind turbine blade anti-icing, self-cleaning and drag reduction. In this study, ZnO and SiO2 multi-scale superhydrophobic coatings with mechanical flexibility were prepared by embedding modified ZnO and SiO2 nanoparticles in PDMS. The prepared coating has a higher static water contact angle (CA is 153°) and a lower rolling angle (SA is 3.3°), showing excellent super-hydrophobicity. Because of its excellent superhydrophobic ability and micro-nano structure, the coating has good anti-icing ability. Under the conditions of −10°C and 60% relative humidity, the coating can delay the freezing time by 1511S,… More >

  • Open Access

    ARTICLE

    Investigation of Heterogeneous Ice Nucleation on the Micro-Cubic Structure Superhydrophobic Surface for Enhancing Icing-Delay Performance

    Senyun Liu1,2, Qinglin Liu1,2, Xian Yi1,2,*, Yizhou Shen4,*, Long Guo1,2, Wenqing Hou4, Haifeng Chen3, Zhen Wang4

    Journal of Renewable Materials, Vol.8, No.12, pp. 1617-1631, 2020, DOI:10.32604/jrm.2020.014158

    Abstract The aim of this study is to explore the heterogeneous ice nucleation behavior based on controllable micro-cubic array structure surfaces from the statistic perspective. To this end, we firstly constructed a group of micro-cubic array structures on silicon substrates by a selective plasma etching technique. After grafting low-free-energy substance, the as-constructed micro-cubic array structure surfaces exhibited higher non-wettability with the water contact angle being up to 150°. On this basis, 500 cycles of freezing and melting processes were accurately recorded to analyze the instantaneous ice nucleation behavior according to the statistical results of freezing temperature. As a consequence, the statistical… More >

  • Open Access

    ARTICLE

    Urethane Modified Hydrophobic Compact Wood Pulp Paper for Oil Spill Cleanup: A Preliminary Study

    Gustavo de Souza, Ricardo K. Kramer, Antonio J. F. Carvalho*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1257-1268, 2020, DOI:10.32604/jrm.2020.011906

    Abstract Oil spills and oil/water wastewater are among the great concerns regarding oil pollution. Existing technologies face many limitations and in some cases are responsible for causing secondary pollution, therefore there is as seek for environmental friendly solutions. Biomass, from which celluloses are highlighted, are being employed for oil/water separation or oil absorbents membranes. Usually, these membranes are obtained by freeze drying of CNF (cellulose nano- fibrils) suspensions followed by chemical modification for hydrophobization, which involves expensive process as chemical vapor deposition and expensive reactants as sylanes, turning these processes hardly scalable. Here, we produced a natural porous structure paper from… More >

  • Open Access

    ARTICLE

    Superhydrophobic and Oleophobic UV-Curable Surface Engineering of Cellulose-Based Substrates

    José M. R. C. A. Santos*, Ana R. Sampaio, Joana Branquinho

    Journal of Renewable Materials, Vol.4, No.1, pp. 31-40, 2016, DOI:10.7569/JRM.2015.634123

    Abstract Cellulose-based materials are one of the most widely used materials provided by nature to mankind. In particular, cotton fi bers have been used for millennia to produce clothing items. This wide usage stems from the inherent properties of cotton fabrics such as hydrophilicity and permeability to water vapor. However, increasingly sophisticated uses for cotton-based clothing (e.g., technical textiles) demand specifi c properties such as hydrophobicity and oleophobicity for repellent functions. The current surface treatments used to attain these functionalities are based on thermally initiated polymerization reactions, using water-based formulations. Thus, the current technologies are energy- and water-intensive. The advantages of… More >

Displaying 11-20 on page 2 of 21. Per Page