Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Theoretical Study on Hydrogen Diffusion Influenced Screw Dislocation Motion in Body-Centered Cubic Iron

    Jiaqin Xu1, Shuhei Shinzato1, Shihao Zhang1, Fan-Shun Meng1, Shigenobu Ogata1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011814

    Abstract Hydrogen has the potential to be the clean energy solution to achieve the sustainable development goals (SDGs). However, from preparation to utilization, the hydrogen embrittlement can not be neglected. Hydrogen embrittlement occurs as a result of hydrogen affecting dislocations motion and cracks opening. Dislocation motion in hydrogen environment has not been clarified although several mechanisms have been proposed, including the hydrogen enhanced decohesion (HEDE), the hydrogen enhanced macroscopic ductility (HEMP), the hydrogen enhanced local plastic model (HELP), etc. It is essential to comprehend the underlying hydrogen-dislocation interactions that cause embrittlement. Also, dynamics of dislocation motion… More >

  • Open Access

    ABSTRACT

    Empirical Formulae to Predict Hardness, Hydrogen Diffusion Coefficient and Tensile Properties of Steel HAZ

    Tadashi Kasuya1,*, A. Toshimitsu Yokobori Jr2, Nobuyuki Ishikawa3, Manabu Enoki1, Satoshi Minamoto4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 120-120, 2019, DOI:10.32604/icces.2019.05227

    Abstract Weld cold cracking is categorized as hydrogen cracking. To assess cold cracking susceptibility of steel HAZ (heat affected zone), it is necessary to estimate local hydrogen content and residual stress at a weld root that are in general numerically calculated by FEM and/or FDM. To conduct numerical calculations, physical and mechanical properties such as diffusion coefficient of hydrogen in steel are necessary. In this work, we have developed empirical formulae to calculate HAZ hardness, hydrogen diffusion coefficient and tensile properties. The present empirical formula of HAZ hardness is expressed using chemical compositions of a welded… More >

  • Open Access

    ABSTRACT

    Numerical Analysis on Hydrogen Diffusion Behaviour in Multi Materials Related to Weld Joint

    A.Toshimitsu Yokobori Jr1,*, Go. Ozeki1, Toshihito OHMI1,2, Tadashi Kasuya3, Nobuyuki Ishikawa4, Manabu Enoki3, Satoshi Minamoto5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 119-119, 2019, DOI:10.32604/icces.2019.05177

    Abstract Authors have been founded that hydrogen diffusion and concentration behavior for notched specimens of multi-materials with space distribution of various material properties were dominated not only by the space gradient of hydrostatic stress caused by the notch tip, ∇σp but also by that of diffusion coefficient, ∇D(T, HV, εp) caused by space distributions of temperature, hardness and plastic strain due to multi-materials. In this research, on the basis of our proposed coupled analysis of heat transfer induced thermal stress driven hydrogen diffusion, the effect of ∇D(T, HV, εp) ) on hydrogen concentration behavior was clarified by solving the… More >

  • Open Access

    ABSTRACT

    Elastoplastic Phase Field Model for Time-dependent Hydrogen Diffusion, Hydride (and Blister) Formation and Fracture Initiation in Zirconium

    San-Qiang Shi

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 35-36, 2011, DOI:10.3970/icces.2011.020.035

    Abstract Zirconium and its alloys are key structural materials used in the nuclear power industry. In service, these metals are susceptible to a slow corrosion process that leads to a gradual pickup of hydrogen impurities from the environment. It is well known that hydrogen impurity will be attracted to stress concentrators such as notch and crack tips. At a certain hydrogen level, a complicated pattern of hydride precipitates can develop around these stress concentrators. Because of the brittleness of these hydrides, the original strength of the alloys can be reduced by orders of magnitude, and the… More >

Displaying 1-10 on page 1 of 4. Per Page