Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    A Frictionless Contact Algorithm for Meshless Methods

    R. Vignjevic1, T. De Vuyst2, J. C. Campbell1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.1, pp. 35-48, 2006, DOI:10.3970/cmes.2006.013.035

    Abstract An approach to the treatment of contact problems involving frictionless sliding and separation under large deformations in meshless methods is proposed. The method is specially suited for non-structured spatial discretisation. The contact conditions are imposed using a contact potential for particles in contact. Inter-penetration is checked as a part of the neighbourhood search. In the case of conventional SPH contact conditions are enforced on the boundary layer 2h thick while in the case of the normalized SPH contact conditions are enforced for the particles lying on the contact surface. The implementation of the penalty based contact algorithm for the explicit… More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and decreasing support layer thickness, the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Bubble Formation at a Single Orifice in Gas-fluidized Beds with Smoothed Particle Hydrodynamics and Finite Volume Coupled Method

    F.Z. Chen1,2, H.F. Qiang1, W.R. Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 41-68, 2015, DOI:10.3970/cmes.2015.104.041

    Abstract A coupled method describing gas-solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds. Solid particles are traced with smoothed particle hydrodynamics, whereas gas phase is discretized by finite volume method. Drag force, gas pressure gradient, and volume fraction are used to couple the two methods. The effect of injection velocities, particle sizes, and particle densities on bubble growth is analyzed using the coupled method. The simulation results, obtained for two-dimensional geometries, include the shape and diameter size of a bubble as a function of time; such results are compared with… More >

  • Open Access

    ARTICLE

    Solution of Two-dimensional Linear and Nonlinear Unsteady Schrödinger Equation using “Quantum Hydrodynamics” Formulation with a MLPG Collocation Method

    V. C. Loukopoulos1, G. C. Bourantas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 49-70, 2014, DOI:10.3970/cmes.2014.103.049

    Abstract A numerical solution of the linear and nonlinear time-dependent Schrödinger equation is obtained, using the strong form MLPG Collocation method. Schrödinger equation is replaced by a system of coupled partial differential equations in terms of particle density and velocity potential, by separating the real and imaginary parts of a general solution, called a quantum hydrodynamic (QHD) equation, which is formally analogous to the equations of irrotational motion in a classical fluid. The approximation of the field variables is obtained with the Moving Least Squares (MLS) approximation and the implicit Crank-Nicolson scheme is used for time discretization. For the two-dimensional nonlinear… More >

  • Open Access

    ARTICLE

    Free-Space Fundamental Solution of a 2D Steady Slow Viscous MHD Flow

    A. Sellier1, S. H. Aydin2, M. Tezer-Sezgin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 393-406, 2014, DOI:10.3970/cmes.2014.102.393

    Abstract The fundamental free-space 2D steady creeping MHD flow produced by a concentrated point force of strength g located at a so-called source point x0 in an unbounded conducting Newtonian liquid with uniform viscosity µ and conductivity σ > 0 subject to a prescribed uniform ambient magnetic field B = Be1 is analytically obtained. More precisely, not only the produced flow pressure p and velocity u but also the resulting stress tensor field σ are expressed at any observation point x ≠ x0 in terms of usual modified Bessel functions, the vectors g, x-x0 and the so-called Hartmann layer thickness d… More >

  • Open Access

    ARTICLE

    Simulation of Free Surface Flow with a Revolving Moving Boundary for Screw Extrusion Using Smoothed Particle Hydrodynamics

    T.W. Dong1, H.S. Liu1, S.L. Jiang2, L.Gu1, Q.W. Xiao1, Z. Yu1, X.F. Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.5, pp. 369-390, 2013, DOI:10.3970/cmes.2013.095.369

    Abstract In this paper, we present a free surface flow model with a forced revolving moving boundary for partially filled screw extrusion. The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate this complex flow. A set of organic glass experimental device for this partially filled fluid is manufactured. SPH results are satisfactorily compared with experiment results. The computed free surfaces are in good agreement with the free surfaces obtained from the experiment. Further analysis shows that with the increase of the speed, the average velocity of fluid increases, the effect of centrifugal force begin to show up, the maximum pressure… More >

  • Open Access

    ARTICLE

    Simulation of Natural Convection Influenced by Magnetic Field with Explicit Local Radial Basis Function Collocation Method

    K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 327-352, 2013, DOI:10.3970/cmes.2013.092.327

    Abstract The purpose of the present paper is to extend and explore the application of a novel meshless Local Radial Basis Function Collocation Method (LRBFCM) in solution of a steady, laminar, natural convection flow, influenced by magnetic field. The problem is defined by coupled mass, momentum, energy and induction equations that are solved in two dimensions by using local collocation with multiquadrics radial basis functions on an overlapping five nodded subdomains and explicit time-stepping. The fractional step method is used to couple the pressure and velocity fields. The considered problem is calculated in a square cavity with two insulated horizontal and… More >

  • Open Access

    ARTICLE

    Large Deformation Analysis with Galerkin based Smoothed Particle Hydrodynamics

    S. Wong, Y. Shie

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.2, pp. 97-118, 2008, DOI:10.3970/cmes.2008.036.097

    Abstract In this paper, we propose a Galerkin-based smoothed particle hydrodynamics (SPH) formulation with moving least-squares meshless approximation, applied to solid mechanics and large deformation. Our method is truly meshless and based on Lagrangian kernel formulation and stabilized nodal integration. The performance of the methodology proposed is tested through various simulations, demonstrating the attractive ability of particle methods to handle severe distortions and complex phenomena. More >

  • Open Access

    ARTICLE

    Modified Algorithm for Surface Tension with Smoothed Particle Hydrodynamics and Its Applications

    H.F.Qiang1, F.Z.Chen1, W.R. Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 239-262, 2011, DOI:10.3970/cmes.2011.077.239

    Abstract Based on smoothed particle hydrodynamics (SPH) method with surface tension proposed by Morris, this paper is intended to modify equations for surface tension by modifying normal and curvature with corrective smoothing particle method (CSPM). Compared with the continuum surface force (CSF) model for surface tension employed in the traditional SPH method, the accuracy in the present paper is much higher in terms of handling the problems with large deformation and surface tension. The reason is that in the traditional SPH method the deficiency of particles is near the boundary and sharp-angled areas, and it causes gross errors of curvature calculation.… More >

  • Open Access

    ARTICLE

    Examination and Analysis of Implementation Choices within the Material Point Method (MPM)

    M. Steffen1, P.C. Wallstedt2, J.E. Guilkey2,3, R.M. Kirby1, M. Berzins1

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.2, pp. 107-128, 2008, DOI:10.3970/cmes.2008.031.107

    Abstract The Material Point Method (MPM) has shown itself to be a powerful tool in the simulation of large deformation problems, especially those involving complex geometries and contact where typical finite element type methods frequently fail. While these large complex problems lead to some impressive simulations and solutions, there has been a lack of basic analysis characterizing the errors present in the method, even on the simplest of problems. The large number of choices one has when implementing the method, such as the choice of basis functions and boundary treatments, further complicates this error analysis.\newline In this paper we explore some… More >

Displaying 41-50 on page 5 of 62. Per Page