Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    PROCEEDINGS

    GPU-Accelerated Numerical Modeling of Hypervelocity Impacts on CFRP Using SPH

    Yao Lu1, Jianyu Chen2, Dianlei Feng3,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010004

    Abstract CFRPs (carbon fiber reinforced plastics), as a kind of fiber-reinforced plastic, present various advantages over traditional materials regarding the specific strength, stiffness, and corrosion resistance. For this reason, CFRPs are widely used in the space industry, like satellites and space stations, which are easily subjected to the HVIs (hypervelocity impacts) threatened by space debris. In order to mitigate the damage of HVIs and protect the spatial structures, it is necessary to predict the HVI process on CFRPs. Smoothed particle hydrodynamics (SPH) method, as a mesh-free particle-based method, has been widely applied for modeling HVI problems due to its special advantages… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves, is simulated to validate this… More >

  • Open Access

    ARTICLE

    MHD FLOW AND HEAT TRANSFER IN A WILLIAMSON FLUID FROM A VERTICAL PERMEABLE CONE WITH THERMAL AND MOMENTUM SLIP EFFECTS: A MATHEMATICAL STUDY

    CH. Amanullaa,b,* , N. Nagendraa , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.40

    Abstract A theoretical and computational study of the magneto hydrodynamic flow and free convection heat transfer in an electro-conductive polymer on the external surface of a vertical permeable cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical permeable cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The non-dimensional, transformed boundary layer equations for momentum and energy are solved with the second order accurate implicit Keller box finite difference method under appropriate boundary conditions. Validation of the numerical solutions is achieved via benchmarking… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CATTANEO-CHRISTOV HEAT FLUX MODEL ON MHD HYPERBOLIC TANGENT FLUID OVER A MOVING POROUS SURFACE

    Z. Iqbal, Ehtsham Azhar* , E. N. Maraj, Bilal Ahmad

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.25

    Abstract Present investigation represent the study of Cattaneo-Christov heat flux model on boundary layer flow of hyperbolic tangent fluid which is generalized non-Newtonian fluid model over a continuously moving porous surface with a parallel free stream velocity. Mathematical formulation is completed in the presence of Magneto-hydrodynamics (MHD). Suitable relations transform the partial differential equations into the ordinary differential equations. Nonlinear flow analysis is computed and velocity and temperature profiles are obtained by shooting algorithm. Graphs are plotted to analyze the behavior of various involved physical parameters. Furthermore both type of flows Sakaidis ( λ = 1) and Blasius flow (0 ≤… More >

  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are utilized to resolve the altered… More >

  • Open Access

    ARTICLE

    THERMAL AND MOMENTUM SLIP EFFECTS ON HYDROMAGNETIC CONVECTION FLOW OF A WILLIAMSON FLUID PAST A VERTICAL TRUNCATED CONE

    CH. Amanullaa,b,* , N. Nagendraa , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.22

    Abstract In this article, the combined theoretical and computational study of the magneto hydrodynamic heat transfer in an electro-conductive polymer on the external surface of a vertical truncated cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical truncated cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum and energy equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to… More >

  • Open Access

    ARTICLE

    MULTIPLE SLIPS AND CHEMICAL REACTION EFFECTS ON MHD STAGNATION POINT FLOW OF CASSON FLUID OVER A STRETCHING SHEET WITH VISCOUS AND JOULES HEATING

    G. Vinod Kumar, R. V. M. S. S. Kiran Kumar* , S. V. K. Varma

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.23

    Abstract The steady boundary layer stagnation flow of a Casson fluid over a stretching sheet with slips boundary conditions in the presence of viscous dissipation, Joule heating and the first order destructive chemical reaction is analyzed. The governing flow problem is based on momentum equation, energy equation, and mass diffusion equation and these are further simplified with the help of similarity transformations. The reduced, resulting highly nonlinear coupled ordinary differential equations are solved using the Matlab bvp4c package. The effects of various parameters on the dimensionless velocity, temperature, and concentration as well as on the skin friction coefficient and the rate… More >

  • Open Access

    ARTICLE

    HOMOTOPY ANALYSIS FOR MHD HIEMENZ FLOW IN A POROUS MEDIUM WITH THERMAL RADIATION, VELOCITY AND THERMAL SLIPS EFFECTS

    Nasreen Bano∗,† , B. B. Singh, S. R. Sayyed

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.14

    Abstract The present study deals with the two dimensional steady laminar forced MHD Hiemenz flow past a flat plate in a porous medium. The effects of thermal radiation and partial slips on the flow field have been investigated under the variable wall temperature condition of the plate. The governing equations have been transformed into a set of coupled non-linear ordinary differential equations (ODEs) by using suitable similarity transformations. These equations have been solved analytically by using homotopy analysis method (HAM). The effects of Prandtl number, suction/blowing parameter, permeability parameter, velocity slip parameter, radiation parameter, magnetic parameter, wall temperature exponent and thermal… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF SLIP INFLUENCE ON ELECTRIC CONDUCTING VISCOELASTIC FLUID PAST AN ISOTHERMAL CYLINDER

    CH. Amanullaa,b,*, N. Nagendrab , M. Suryanarayana Reddyc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-13, 2018, DOI:10.5098/hmt.10.10

    Abstract The present study deals with the computational analysis on an electrically conducting magneto viscoelastic fluid over a circular cylinder. Prescribed partial slip effects are also taken into account. The governing physical problem is tackled numerically by using the highly efficient and reliable Keller box algorithm. Impact of sundry physical parameters on physical quantities of interest are evaluated. The influence of Williamson viscoelastic fluid parameter, magnetic body force parameter, Thermal and velocity (hydrodynamic) slip parameters, stream wise variable and Prandtl number on thermos-fluid characteristics are studied graphically. The model is relevant to the simulation of magnetic polymer materials processing. More >

  • Open Access

    ARTICLE

    MHD FLOW IN A CIRCULAR HORIZONTAL PIPE UNDER HEAT SOURCE/SINK WITH SUCTION/INJECTION ON WALL

    G. Nagarajua,∗ , Mahesh Garvandhab, J.V. Ramana Murthyc

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.6

    Abstract This paper analyzes a hypothesis of the 2−dimensional thermal transport behavior of Newtonian axisymmetric, viscous heating flow in a horizontal pipe. The flow is subjected to an externally applied uniform suction across the pipe wall in the polar direction, a constant magnetic field perpendicular to the wall and a uniform heat source/sink on the surface of the cylinder. The thermal boundary condition is imposed as a uniform heat flux. The Velocity fields are expressed in terms of stream function and the solution is obtained using the homotopy analysis method (HAM). Graphs are designed to analyze the significant effect on temperature… More >

Displaying 11-20 on page 2 of 62. Per Page