Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    HQNN-SFOP: Hybrid Quantum Neural Networks with Signal Feature Overlay Projection for Drone Detection Using Radar Return Signals—A Simulation

    Wenxia Wang, Jinchen Xu, Xiaodong Ding, Zhihui Song, Yizhen Huang, Xin Zhou, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1363-1390, 2024, DOI:10.32604/cmc.2024.054055 - 15 October 2024

    Abstract With the wide application of drone technology, there is an increasing demand for the detection of radar return signals from drones. Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition. This method suffers from the problem of large dimensionality of image features, which leads to large input data size and noise affecting learning. Therefore, this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512 × 4 to 16 dimensions. However, the downscaled feature data… More >

Displaying 1-10 on page 1 of 1. Per Page