Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

    Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3, Shuting Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1103-1137, 2024, DOI:10.32604/cmes.2023.029177 - 17 November 2023

    Abstract This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify the hybrid parallel strategy More > Graphic Abstract

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

  • Open Access

    ARTICLE

    A New Hybrid Hierarchical Parallel Algorithm to Enhance the Performance of Large-Scale Structural Analysis Based on Heterogeneous Multicore Clusters

    Gaoyuan Yu1, Yunfeng Lou2, Hang Dong3, Junjie Li1, Xianlong Jin1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 135-155, 2023, DOI:10.32604/cmes.2023.025166 - 05 January 2023

    Abstract Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays. Nevertheless, parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneous multicore clusters. To solve it, a hybrid hierarchical parallel algorithm (HHPA) is proposed on the basis of the conventional domain decomposition algorithm (CDDA) and the parallel sparse solver. In this new algorithm, a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes, heterogeneous-core-groups (HCGs) and inside-heterogeneous-core-groups through mapping computing tasks to various… More >

  • Open Access

    ARTICLE

    Hybrid Parallelism of Multifrontal Linear Solution Algorithm with Out Of Core Capability for Finite Element Analysis

    Min Ki Kim1, Seung Jo Kim2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.4, pp. 297-332, 2012, DOI:10.3970/cmes.2012.084.297

    Abstract Hybrid parallelization of multifrontal solution method and its parallel performances in a multicore distributed parallel computing architecture are represented in this paper. To utilize a state-of-the-art multicore computing architecture, parallelization of the multifrontal method for a symmetric multiprocessor machine is required. Multifrontal method is easier to parallelize than other direct solution methods because the solution procedure implies that the elimination of unknowns can be executed simultaneously. This paper focuses on the multithreaded parallelism and mixing distributed algorithm and multithreaded algorithm together in a unified software. To implement the hybrid parallelized algorithm in a distributed shared… More >

Displaying 1-10 on page 1 of 3. Per Page