Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid (MHAVH) Model

    Hina Naz1, Zuping Zhang1,*, Mohammed Al-Habib1, Fuad A. Awwad2, Emad A. A. Ismail2, Zaid Ali Khan3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2673-2696, 2024, DOI:10.32604/cmc.2024.049186 - 15 May 2024

    Abstract Cardiovascular disease is the leading cause of death globally. This disease causes loss of heart muscles and is also responsible for the death of heart cells, sometimes damaging their functionality. A person’s life may depend on receiving timely assistance as soon as possible. Thus, minimizing the death ratio can be achieved by early detection of heart attack (HA) symptoms. In the United States alone, an estimated 610,000 people die from heart attacks each year, accounting for one in every four fatalities. However, by identifying and reporting heart attack symptoms early on, it is possible to… More >

  • Open Access

    ARTICLE

    Traffic Sign Detection with Low Complexity for Intelligent Vehicles Based on Hybrid Features

    Sara Khalid1, Jamal Hussain Shah1,*, Muhammad Sharif1, Muhammad Rafiq2, Gyu Sang Choi3,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 861-879, 2023, DOI:10.32604/cmc.2023.035595 - 08 June 2023

    Abstract Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians. Consequently, traffic signs have been of great importance for every civilized country, which makes researchers give more focus on the automatic detection of traffic signs. Detecting these traffic signs is challenging due to being in the dark, far away, partially occluded, and affected by the lighting or the presence of similar objects. An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues. This technique aimed to devise… More >

  • Open Access

    ARTICLE

    Novel Android Malware Detection Method Based on Multi-dimensional Hybrid Features Extraction and Analysis

    Yue Li1, Guangquan Xu2,3, Hequn Xian1,*, Longlong Rao3, Jiangang Shi4,*

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 637-647, 2019, DOI:10.31209/2019.100000118

    Abstract In order to prevent the spread of Android malware and protect privacy information from being compromised, this study proposes a novel multidimensional hybrid features extraction and analysis method for Android malware detection. This method is based primarily on a multidimensional hybrid features vector by extracting the information of permission requests, API calls, and runtime behaviors. The innovation of this study is to extract greater amounts of static and dynamic features information and combine them, that renders the features vector for training completer and more comprehensive. In addition, the feature selection algorithm is used to further More >

Displaying 1-10 on page 1 of 3. Per Page