Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach Using Vision Transformer and U-Net for Flood Segmentation

    Cyreneo Dofitas1, Yong-Woon Kim2, Yung-Cheol Byun3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069374 - 09 December 2025

    Abstract Recent advances in deep learning have significantly improved flood detection and segmentation from aerial and satellite imagery. However, conventional convolutional neural networks (CNNs) often struggle in complex flood scenarios involving reflections, occlusions, or indistinct boundaries due to limited contextual modeling. To address these challenges, we propose a hybrid flood segmentation framework that integrates a Vision Transformer (ViT) encoder with a U-Net decoder, enhanced by a novel Flood-Aware Refinement Block (FARB). The FARB module improves boundary delineation and suppresses noise by combining residual smoothing with spatial-channel attention mechanisms. We evaluate our model on a UAV-acquired flood More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images

    Ghadah Naif Alwakid*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068666 - 10 November 2025

    Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly affects cognitive function, making early and accurate diagnosis essential. Traditional Deep Learning (DL)-based approaches often struggle with low-contrast MRI images, class imbalance, and suboptimal feature extraction. This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans. Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN). A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient (MCC)-based evaluation method into the design.… More >

  • Open Access

    ARTICLE

    Explore Advanced Hybrid Deep Learning for Enhanced Wireless Signal Detection in 5G OFDM Systems

    Ahmed K. Ali1, Jungpil Shin2,*, Yujin Lim3,*, Da-Hun Seong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4245-4278, 2025, DOI:10.32604/cmes.2025.073871 - 23 December 2025

    Abstract Single-signal detection in orthogonal frequency-division multiplexing (OFDM) systems presents a challenge due to the time-varying nature of wireless channels. Although conventional methods have limitations, particularly in multi-input multioutput orthogonal frequency division multiplexing (MIMO-OFDM) systems, this paper addresses this problem by exploring advanced deep learning approaches for combined channel estimation and signal detection. Specifically, we propose two hybrid architectures that integrate a convolutional neural network (CNN) with a recurrent neural network (RNN), namely, CNN-long short-term memory (CNN-LSTM) and CNN-bidirectional-LSTM (CNN-Bi-LSTM), designed to enhance signal detection performance in MIMO-OFDM systems. The proposed CNN-LSTM and CNN-Bi-LSTM architectures are… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Dynamic Community Detection: Taxonomy, Challenges, and Future Directions

    Hiba Sameer Saeed#, Amenah Dahim Abbood#,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4375-4405, 2025, DOI:10.32604/cmc.2025.067783 - 23 October 2025

    Abstract In recent years, the evolution of the community structure in social networks has gained significant attention. Due to the rapid and continuous evolution of real-world networks over time. This makes the process of identifying communities and tracking their topology changes challenging. To tackle these challenges, it is necessary to find efficient methodologies for analyzing the behavior patterns of dynamic communities. Several previous reviews have introduced algorithms and models for community detection. However, these methods have not been very accurate in identifying communities. Moreover, none of the reviewed papers made an apparent effort to link algorithms… More >

  • Open Access

    ARTICLE

    A Hybrid CNN-Transformer Framework for Normal Blood Cell Classification: Towards Automated Hematological Analysis

    Osama M. Alshehri1, Ahmad Shaf2,*, Muhammad Irfan3,*, Mohammed M. Jalal4, Malik A. Altayar4, Mohammed H. Abu-Alghayth5, Humood Al Shmrany6, Tariq Ali7, Toufique A. Soomro8, Ali G. Alkhathami9

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1165-1196, 2025, DOI:10.32604/cmes.2025.067150 - 31 July 2025

    Abstract Background: Accurate classification of normal blood cells is a critical foundation for automated hematological analysis, including the detection of pathological conditions like leukemia. While convolutional neural networks (CNNs) excel in local feature extraction, their ability to capture global contextual relationships in complex cellular morphologies is limited. This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification, laying the groundwork for future leukemia diagnostics. Methods: The proposed architecture integrates pre-trained CNNs (ResNet50, EfficientNetB3, InceptionV3, CustomCNN) with Vision Transformer (ViT) layers to combine local and global feature modeling. Four hybrid models were evaluated on… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Pipeline for Wearable Sensors-Based Human Activity Recognition

    Asaad Algarni1, Iqra Aijaz Abro2, Mohammed Alshehri3, Yahya AlQahtani4, Abdulmonem Alshahrani4, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5879-5896, 2025, DOI:10.32604/cmc.2025.064601 - 30 July 2025

    Abstract Inertial Sensor-based Daily Activity Recognition (IS-DAR) requires adaptable, data-efficient methods for effective multi-sensor use. This study presents an advanced detection system using body-worn sensors to accurately recognize activities. A structured pipeline enhances IS-DAR by applying signal preprocessing, feature extraction and optimization, followed by classification. Before segmentation, a Chebyshev filter removes noise, and Blackman windowing improves signal representation. Discriminative features—Gaussian Mixture Model (GMM) with Mel-Frequency Cepstral Coefficients (MFCC), spectral entropy, quaternion-based features, and Gammatone Cepstral Coefficients (GCC)—are fused to expand the feature space. Unlike existing approaches, the proposed IS-DAR system uniquely integrates diverse handcrafted features using… More >

  • Open Access

    ARTICLE

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Md. Maniruzzaman3, Satoshi Nishimura1, Sultan Alfarhood4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3615-3638, 2025, DOI:10.32604/cmes.2025.064588 - 30 June 2025

    Abstract Activity recognition is a challenging topic in the field of computer vision that has various applications, including surveillance systems, industrial automation, and human-computer interaction. Today, the demand for automation has greatly increased across industries worldwide. Real-time detection requires edge devices with limited computational time. This study proposes a novel hybrid deep learning system for human activity recognition (HAR), aiming to enhance the recognition accuracy and reduce the computational time. The proposed system combines a pre-trained image classification model with a sequence analysis model. First, the dataset was divided into a training set (70%), validation set… More > Graphic Abstract

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

  • Open Access

    ARTICLE

    Diabetes Prediction Using ADASYN-Based Data Augmentation and CNN-BiGRU Deep Learning Model

    Tehreem Fatima1, Kewen Xia1,*, Wenbiao Yang2, Qurat Ul Ain1, Poornima Lankani Perera1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 811-826, 2025, DOI:10.32604/cmc.2025.063686 - 09 June 2025

    Abstract The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient diagnostic tools to support early intervention and treatment. However, the inherent limitations of existing datasets, including significant class imbalances and inadequate sample diversity, pose challenges to the accurate prediction and classification of diabetes. Addressing these issues, this study proposes an innovative diabetes prediction framework that integrates a hybrid Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for classification with Adaptive Synthetic Sampling (ADASYN) for data augmentation. ADASYN was employed to generate synthetic yet representative data samples, effectively mitigating class… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning and Optimized Feature Selection for Oil Spill Detection in Satellite Images

    Ghada Atteia1,*, Mohammed Dabboor2, Konstantinos Karantzalos3, Maali Alabdulhafith1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1747-1767, 2025, DOI:10.32604/cmc.2025.063363 - 09 June 2025

    Abstract This study explores the integration of Synthetic Aperture Radar (SAR) imagery with deep learning and metaheuristic feature optimization techniques for enhanced oil spill detection. This study proposes a novel hybrid approach for oil spill detection. The introduced approach integrates deep transfer learning with the metaheuristic Binary Harris Hawk optimization (BHHO) and Principal Component Analysis (PCA) for improved feature extraction and selection from input SAR imagery. Feature transfer learning of the MobileNet convolutional neural network was employed to extract deep features from the SAR images. The BHHO and PCA algorithms were implemented to identify subsets of… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Method for Forecasting Reservoir Water Level from Sentinel-2 Satellite Images

    Hoang Thi Minh Chau1,2,3, Tran Thi Ngan4,*, Nguyen Long Giang5, Tran Manh Tuan6, Tran Kim Chau7

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4915-4937, 2025, DOI:10.32604/cmc.2025.062784 - 19 May 2025

    Abstract Global climate change, along with the rapid increase of the population, has put significant pressure on water security. A water reservoir is an effective solution for adjusting and ensuring water supply. In particular, the reservoir water level is an essential physical indicator for the reservoirs. Forecasting the reservoir water level effectively assists the managers in making decisions and plans related to reservoir management policies. In recent years, deep learning models have been widely applied to solve forecasting problems. In this study, we propose a novel hybrid deep learning model namely the YOLOv9_ConvLSTM that integrates YOLOv9,… More >

Displaying 1-10 on page 1 of 66. Per Page