Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Multi-Objective Structural Optimization of Composite Wind Turbine Blade Using a Novel Hybrid Approach of Artificial Bee Colony Algorithm Based on the Stochastic Method

    Ramazan Özkan1,2, Mustafa Serdar Genç1,3,*, İlker Kayali1,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3349-3380, 2025, DOI:10.32604/cmes.2025.072519 - 23 December 2025

    Abstract The optimization of turbine blades is crucial in improving the efficiency of wind energy systems and developing clean energy production models. This paper presented a novel approach to the structural design of small-scale turbine blades using the Artificial Bee Colony (ABC) Algorithm based on the stochastic method to optimize both mass and cost (objective functions). The study used computational fluid dynamics (CFD) and structural analysis to consider the fluid-structure interaction. The optimization algorithm defined several variables: structural constraints, the type of composite material, and the number of composite layers to form a mathematical model. The More >

  • Open Access

    ARTICLE

    Domain-Specific NER for Fluorinated Materials: A Hybrid Approach with Adversarial Training and Dynamic Contextual Embeddings

    Jiming Lan1, Hongwei Fu1,*, Yadong Wu1,2, Yaxian Liu1,3, Jianhua Dong1,2, Wei Liu1,2, Huaqiang Chen1,2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4645-4665, 2025, DOI:10.32604/cmc.2025.067289 - 23 October 2025

    Abstract In the research and production of fluorinated materials, large volumes of unstructured textual data are generated, characterized by high heterogeneity and fragmentation. These issues hinder systematic knowledge integration and efficient utilization. Constructing a knowledge graph for fluorinated materials processing is essential for enabling structured knowledge management and intelligent applications. Among its core components, Named Entity Recognition (NER) plays an essential role, as its accuracy directly impacts relation extraction and semantic modeling, which ultimately affects the knowledge graph construction for fluorinated materials. However, NER in this domain faces challenges such as fuzzy entity boundaries, inconsistent terminology,… More >

  • Open Access

    REVIEW

    Advanced Feature Selection Techniques in Medical Imaging—A Systematic Literature Review

    Sunawar Khan1, Tehseen Mazhar1,2,*, Naila Sammar Naz1, Fahad Ahmed1, Tariq Shahzad3, Atif Ali4, Muhammad Adnan Khan5,*, Habib Hamam6,7,8,9

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2347-2401, 2025, DOI:10.32604/cmc.2025.066932 - 23 September 2025

    Abstract Feature selection (FS) plays a crucial role in medical imaging by reducing dimensionality, improving computational efficiency, and enhancing diagnostic accuracy. Traditional FS techniques, including filter, wrapper, and embedded methods, have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data. Deep learning-based FS methods, particularly Convolutional Neural Networks (CNNs) and autoencoders, have demonstrated superior performance but lack interpretability. Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution, offering improved accuracy and explainability. Furthermore, integrating multi-modal imaging data (e.g., Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Heavily Occluded Face Detection Using Histogram of Oriented Gradients and Deep Learning Models

    Thaer Thaher1,*, Muhammed Saffarini2, Majdi Mafarja3, Abdulaziz Alashbi4, Abdul Hakim Mohamed5, Ayman A. El-Saleh6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2359-2394, 2025, DOI:10.32604/cmes.2025.065388 - 31 August 2025

    Abstract Face detection is a critical component in modern security, surveillance, and human-computer interaction systems, with widespread applications in smartphones, biometric access control, and public monitoring. However, detecting faces with high levels of occlusion, such as those covered by masks, veils, or scarves, remains a significant challenge, as traditional models often fail to generalize under such conditions. This paper presents a hybrid approach that combines traditional handcrafted feature extraction technique called Histogram of Oriented Gradients (HOG) and Canny edge detection with modern deep learning models. The goal is to improve face detection accuracy under occlusions. The… More >

  • Open Access

    ARTICLE

    Awareness with Machine: Hybrid Approach to Detecting ASD with a Clustering

    Gozde Karatas Baydogmus*, Onder Demir

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3393-3406, 2025, DOI:10.32604/cmc.2025.062643 - 03 July 2025

    Abstract Detection of Autism Spectrum Disorder (ASD) is a crucial area of research, representing a foundational aspect of psychological studies. The advancement of technology and the widespread adoption of machine learning methodologies have brought significant attention to this field in recent years. Interdisciplinary efforts have further propelled research into detection methods. Consequently, this study aims to contribute to both the fields of psychology and computer science. Specifically, the goal is to apply machine learning techniques to limited data for the detection of Autism Spectrum Disorder. This study is structured into two distinct phases: data preprocessing and… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Face Detection Techniques for Occluded Faces: Methods, Datasets, and Open Challenges

    Thaer Thaher1,*, Majdi Mafarja2, Muhammed Saffarini3, Abdul Hakim H. M. Mohamed4, Ayman A. El-Saleh5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2615-2673, 2025, DOI:10.32604/cmes.2025.064857 - 30 June 2025

    Abstract Detecting faces under occlusion remains a significant challenge in computer vision due to variations caused by masks, sunglasses, and other obstructions. Addressing this issue is crucial for applications such as surveillance, biometric authentication, and human-computer interaction. This paper provides a comprehensive review of face detection techniques developed to handle occluded faces. Studies are categorized into four main approaches: feature-based, machine learning-based, deep learning-based, and hybrid methods. We analyzed state-of-the-art studies within each category, examining their methodologies, strengths, and limitations based on widely used benchmark datasets, highlighting their adaptability to partial and severe occlusions. The review… More >

  • Open Access

    ARTICLE

    Toward Intrusion Detection of Industrial Cyber-Physical System: A Hybrid Approach Based on System State and Network Traffic Abnormality Monitoring

    Junbin He1,2, Wuxia Zhang3, Xianyi Liu1, Jinping Liu2,*, Guangyi Yang4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1227-1252, 2025, DOI:10.32604/cmc.2025.064402 - 09 June 2025

    Abstract The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System (ICPS), enhancing intelligence and autonomy. However, this transition also expands the attack surface, introducing critical security vulnerabilities. To address these challenges, this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection. Specifically, an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering (IVB-NCA-NLKF) method is developed to model nonlinear system dynamics, enabling optimal state estimation in multi-sensor ICPS environments. Intrusions within the physical sensing system are identified by More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 561-577, 2025, DOI:10.32604/cmc.2024.057213 - 03 January 2025

    Abstract Detecting pavement cracks is critical for road safety and infrastructure management. Traditional methods, relying on manual inspection and basic image processing, are time-consuming and prone to errors. Recent deep-learning (DL) methods automate crack detection, but many still struggle with variable crack patterns and environmental conditions. This study aims to address these limitations by introducing the MaskerTransformer, a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network (Mask R-CNN) with the global contextual awareness of Vision Transformer (ViT). The research focuses on leveraging the strengths of both architectures… More >

  • Open Access

    ARTICLE

    LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques

    Shanjita Akter Prome1, Md Rafiqul Islam2,*, Md. Kowsar Hossain Sakib1, David Asirvatham1, Neethiahnanthan Ari Ragavan3, Cesar Sanin2, Edward Szczerbicki4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2845-2871, 2024, DOI:10.32604/cmc.2024.055311 - 18 November 2024

    Abstract Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques. Researchers have focused their attention on inventing more effective and efficient solutions for the detection of deception. So, it could be challenging to spot trends, practical approaches, gaps, and chances for contribution.… More >

Displaying 1-10 on page 1 of 31. Per Page