Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    A YOLOv11-Based Deep Learning Framework for Multi-Class Human Action Recognition

    Nayeemul Islam Nayeem1, Shirin Mahbuba1, Sanjida Islam Disha1, Md Rifat Hossain Buiyan1, Shakila Rahman1,*, M. Abdullah-Al-Wadud2, Jia Uddin3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1541-1557, 2025, DOI:10.32604/cmc.2025.065061 - 29 August 2025

    Abstract Human activity recognition is a significant area of research in artificial intelligence for surveillance, healthcare, sports, and human-computer interaction applications. The article benchmarks the performance of You Only Look Once version 11-based (YOLOv11-based) architecture for multi-class human activity recognition. The article benchmarks the performance of You Only Look Once version 11-based (YOLOv11-based) architecture for multi-class human activity recognition. The dataset consists of 14,186 images across 19 activity classes, from dynamic activities such as running and swimming to static activities such as sitting and sleeping. Preprocessing included resizing all images to 512 512 pixels, annotating them… More >

  • Open Access

    ARTICLE

    A Novel Attention-Based Parallel Blocks Deep Architecture for Human Action Recognition

    Yasir Khan Jadoon1, Yasir Noman Khalid1, Muhammad Attique Khan2, Jungpil Shin3,*, Fatimah Alhayan4, Hee-Chan Cho5, Byoungchol Chang6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1143-1164, 2025, DOI:10.32604/cmes.2025.066984 - 31 July 2025

    Abstract Real-time surveillance is attributed to recognizing the variety of actions performed by humans. Human Action Recognition (HAR) is a technique that recognizes human actions from a video stream. A range of variations in human actions makes it difficult to recognize with considerable accuracy. This paper presents a novel deep neural network architecture called Attention RB-Net for HAR using video frames. The input is provided to the model in the form of video frames. The proposed deep architecture is based on the unique structuring of residual blocks with several filter sizes. Features are extracted from each… More >

  • Open Access

    ARTICLE

    Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization

    Ahmad Yahiya Ahmad Bani Ahmad1, Jafar Alzubi2, Sophers James3, Vincent Omollo Nyangaresi4,5,*, Chanthirasekaran Kutralakani6, Anguraju Krishnan7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4791-4812, 2024, DOI:10.32604/cmc.2024.052771 - 12 September 2024

    Abstract In recent years, wearable devices-based Human Activity Recognition (HAR) models have received significant attention. Previously developed HAR models use hand-crafted features to recognize human activities, leading to the extraction of basic features. The images captured by wearable sensors contain advanced features, allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions. Poor lighting and limited sensor capabilities can impact data quality, making the recognition of human actions a challenging task. The unimodal-based HAR approaches are not suitable in a real-time environment. Therefore, an updated HAR model is… More >

  • Open Access

    ARTICLE

    Recognition of Human Actions through Speech or Voice Using Machine Learning Techniques

    Oscar Peña-Cáceres1,2,*, Henry Silva-Marchan3, Manuela Albert4, Miriam Gil1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1873-1891, 2023, DOI:10.32604/cmc.2023.043176 - 29 November 2023

    Abstract The development of artificial intelligence (AI) and smart home technologies has driven the need for speech recognition-based solutions. This demand stems from the quest for more intuitive and natural interaction between users and smart devices in their homes. Speech recognition allows users to control devices and perform everyday actions through spoken commands, eliminating the need for physical interfaces or touch screens and enabling specific tasks such as turning on or off the light, heating, or lowering the blinds. The purpose of this study is to develop a speech-based classification model for recognizing human actions in… More >

  • Open Access

    ARTICLE

    Improved Shark Smell Optimization Algorithm for Human Action Recognition

    Inzamam Mashood Nasir1,*, Mudassar Raza1, Jamal Hussain Shah1, Muhammad Attique Khan2, Yun-Cheol Nam3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2667-2684, 2023, DOI:10.32604/cmc.2023.035214 - 08 October 2023

    Abstract Human Action Recognition (HAR) in uncontrolled environments targets to recognition of different actions from a video. An effective HAR model can be employed for an application like human-computer interaction, health care, person tracking, and video surveillance. Machine Learning (ML) approaches, specifically, Convolutional Neural Network (CNN) models had been widely used and achieved impressive results through feature fusion. The accuracy and effectiveness of these models continue to be the biggest challenge in this field. In this article, a novel feature optimization algorithm, called improved Shark Smell Optimization (iSSO) is proposed to reduce the redundancy of extracted… More >

  • Open Access

    ARTICLE

    SlowFast Based Real-Time Human Motion Recognition with Action Localization

    Gyu-Il Kim1, Hyun Yoo2, Kyungyong Chung3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2135-2152, 2023, DOI:10.32604/csse.2023.041030 - 28 July 2023

    Abstract Artificial intelligence is increasingly being applied in the field of video analysis, particularly in the area of public safety where video surveillance equipment such as closed-circuit television (CCTV) is used and automated analysis of video information is required. However, various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging. Video analysis technology applies object classification, detection, and relationship analysis to continuous 2D frame data, and the various meanings within the video are thus analyzed based on the extracted basic data. Motion recognition is key in this analysis.… More >

  • Open Access

    ARTICLE

    HRNetO: Human Action Recognition Using Unified Deep Features Optimization Framework

    Tehseen Ahsan1,*, Sohail Khalid1, Shaheryar Najam1, Muhammad Attique Khan2, Ye Jin Kim3, Byoungchol Chang4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1089-1105, 2023, DOI:10.32604/cmc.2023.034563 - 06 February 2023

    Abstract Human action recognition (HAR) attempts to understand a subject’s behavior and assign a label to each action performed. It is more appealing because it has a wide range of applications in computer vision, such as video surveillance and smart cities. Many attempts have been made in the literature to develop an effective and robust framework for HAR. Still, the process remains difficult and may result in reduced accuracy due to several challenges, such as similarity among actions, extraction of essential features, and reduction of irrelevant features. In this work, we proposed an end-to-end framework using… More >

  • Open Access

    ARTICLE

    Two-Stream Deep Learning Architecture-Based Human Action Recognition

    Faheem Shehzad1, Muhammad Attique Khan2, Muhammad Asfand E. Yar3, Muhammad Sharif1, Majed Alhaisoni4, Usman Tariq5, Arnab Majumdar6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5931-5949, 2023, DOI:10.32604/cmc.2023.028743 - 28 December 2022

    Abstract Human action recognition (HAR) based on Artificial intelligence reasoning is the most important research area in computer vision. Big breakthroughs in this field have been observed in the last few years; additionally, the interest in research in this field is evolving, such as understanding of actions and scenes, studying human joints, and human posture recognition. Many HAR techniques are introduced in the literature. Nonetheless, the challenge of redundant and irrelevant features reduces recognition accuracy. They also faced a few other challenges, such as differing perspectives, environmental conditions, and temporal variations, among others. In this work,… More >

  • Open Access

    ARTICLE

    Sensors-Based Ambient Assistant Living via E-Monitoring Technology

    Sadaf Hafeez1, Yazeed Yasin Ghadi2, Mohammed Alarfaj3, Tamara al Shloul4, Ahmad Jalal1, Shaharyar Kamal1, Dong-Seong Kim5,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4935-4952, 2022, DOI:10.32604/cmc.2022.023841 - 28 July 2022

    Abstract Independent human living systems require smart, intelligent, and sustainable online monitoring so that an individual can be assisted timely. Apart from ambient assisted living, the task of monitoring human activities plays an important role in different fields including virtual reality, surveillance security, and human interaction with robots. Such systems have been developed in the past with the use of various wearable inertial sensors and depth cameras to capture the human actions. In this paper, we propose multiple methods such as random occupancy pattern, spatio temporal cloud, way-point trajectory, Hilbert transform, Walsh Hadamard transform and bone More >

  • Open Access

    ARTICLE

    Smart Deep Learning Based Human Behaviour Classification for Video Surveillance

    Esam A. AlQaralleh1, Fahad Aldhaban2, Halah Nasseif2, Malek Z. Alksasbeh3, Bassam A. Y. Alqaralleh2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5593-5605, 2022, DOI:10.32604/cmc.2022.026666 - 21 April 2022

    Abstract Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes. The use of deep learning (DL) technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification. The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention. Human action recognition (HAR) is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level. The advancements of the DL models help to accomplish improved… More >

Displaying 1-10 on page 1 of 14. Per Page