Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    PROCEEDINGS

    Simulation of Temporary Plugging Agent Flow State in Fractures of Hot Dry Rock Considering Environmental Changes

    Zongze Li1, Zirui Yang2, Yue Wu3, Chunming He4, Bo Yu2, Daobing Wang2,*, Yueshe Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-4, 2024, DOI:10.32604/icces.2024.012090

    Abstract Geothermal energy is an important renewable energy source, where hot dry rock (HDR) constitutes the primary component, accounting for approximately 90% of the resource. Therefore, the establishment of an efficient HDR geothermal utilization system is a core issue in geothermal resource development. Hydraulic fracturing (HF) technology serves as a crucial means aimed at enhancing the complexity of underground fracture networks and increasing heat exchange efficiency, thus improving the performance of HDR geothermal utilization systems. However, the fracture structure formed by conventional HF techniques is relatively simple, resulting in limited heat exchange areas. Hence, the temporary… More >

  • Open Access

    PROCEEDINGS

    Crack Dynamics Propagation in the Fractured Geothermal Reservoir Under Thermo-Hydro-Mechanical-Chemical Coupling

    Weitao Zhang1, Dongxu Han2,*, Yujie Chen2, Tingyu Li3, Liang Gong1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011484

    Abstract As climate change accelerates due to fossil fuel use, geothermal energy emerges as an indispensable renewable solution 1. Hot dry rock (HDR) reservoirs, accounting for more than 90% of total geothermal resources 2, have gained wide attention worldwide for their abundant reserves, wide distribution, and carbon-free, stable, and efficient supply characteristics 3. While HDR geothermal energy offers significant potential, its development faces challenges, including the complex interaction between fluid flow, heat transfer, reactive solute transport, and the rock’s mechanical processes, referred to as the THMC coupling process 4. Cracks, ubiquitous in HDR geothermal reservoirs, exhibit… More >

  • Open Access

    ARTICLE

    A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation

    Hao Qi1, Mohamed Sharaf2, Andres Annuk3, Adrian Ilinca4, Mohamed A. Mohamed5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1387-1404, 2024, DOI:10.32604/cmes.2024.048672 - 20 May 2024

    Abstract Hot dry rock (HDR) is rich in reserve, widely distributed, green, low-carbon, and has broad development potential and prospects. In this paper, a distributionally robust optimization (DRO) scheduling model for a regionally integrated energy system (RIES) considering HDR co-generation is proposed. First, the HDR-enhanced geothermal system (HDR-EGS) is introduced into the RIES. HDR-EGS realizes the thermoelectric decoupling of combined heat and power (CHP) through coordinated operation with the regional power grid and the regional heat grid, which enhances the system wind power (WP) feed-in space. Secondly, peak-hour loads are shifted using price demand response guidance More >

  • Open Access

    REVIEW

    Progress on Heat Transfer in Fractures of Hot Dry Rock Enhanced Geothermal System

    Yiya Wang, Hailong Yu*, Shucheng Wu, Li Liu, Liuyang Huang, Baozhong Zhu, Yunlan Sun, Enhai Liu

    Energy Engineering, Vol.118, No.4, pp. 797-823, 2021, DOI:10.32604/EE.2021.014467 - 31 May 2021

    Abstract Hot Dry Rock (HDR) is the most potential renewable geothermal energy in the future. Enhanced Geothermal System (EGS) is the most effective method for the development and utilization of HDR resources, and fractures are the main flow channels and one of the most important conditions for studying heat transfer process of EGS. Therefore, the heat transfer process and the heat transfer mechanism in fractures of EGS have been the hot spots of research. Due to the particularity of the mathematical models of heat transfer, research in this field has been at an exploratory stage, and More >

  • Open Access

    ABSTRACT

    Experimental Study on Mechanical Properties of Heat-Treated Hot Dry Rock Samples Under Combined Actions of Triaxial Stress and Pore Pressure

    Daobing Wang1,2, Bo Yu1,*, Dongliang Sun1, Dongxu Han1, Jingfa Li1, Hao Qin1, Peng Wang1, Xufei Yang1, Yajun Deng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 147-148, 2019, DOI:10.32604/icces.2019.04786

    Abstract Hot dry rock (HDR), which is usually buried depth in 3-10 km, contains abundant heat energy for heating the house and making the electricity. Hydraulic fracturing is an effective technology to develop the geothermal resources. In hydraulic fracturing, a large amount of cold water is injected to generate the artificial fractures in subsurface. However, in previous studies, the study on the mechanical properties of HDR under the combined action of triaxial stress and pore pressure is still in its infancy and an exhaustive investigation is lacking. In this study, we experimentally investigated the heat-treated HDR… More >

Displaying 1-10 on page 1 of 5. Per Page