Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

    Huiyan Zhao1, Xuezhong Chen1, Zhijian Hu2,*, Man Chen1, Bo Xiong3, Jianying Yang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1313-1330, 2024, DOI:10.32604/fdmp.2024.048840

    Abstract Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis, a model is developed to predict the related well production rate. This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales, as well as the flow characteristics in different types of thin layers (tight sandstone gas, shale gas, and coalbed gas). Moreover, a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir. A… More > Graphic Abstract

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

  • Open Access

    ARTICLE

    Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells

    Jianchao Shi1,2, Yanan Zhang3, Wantao Liu1,2, Yuliang Su3,*, Jian Shi1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1147-1163, 2024, DOI:10.32604/fdmp.2023.044500

    Abstract Class III tight oil reservoirs have low porosity and permeability, which are often responsible for low production rates and limited recovery. Extensive repeated fracturing is a well-known technique to fix some of these issues. With such methods, existing fractures are refractured, and/or new fractures are created to facilitate communication with natural fractures. This study explored how different refracturing methods affect horizontal well fracture networks, with a special focus on morphology and related fluid flow changes. In particular, the study relied on the unconventional fracture model (UFM). The evolution of fracture morphology and flow field after More >

  • Open Access

    ARTICLE

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

    Fang Li1,*, Juan Wu1, Haiyong Yi2, Lihong Wu2, Lingyun Du1, Yuan Zeng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1015-1030, 2024, DOI:10.32604/fdmp.2023.043256

    Abstract Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors, such as strong reservoir heterogeneity and seepage mechanisms. In this study, the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments. On the basis of these experiments, a numerical simulation model (based on the special seepage mechanism) and an inverse dynamic reserve algorithm (with different equivalent drainage areas) were developed. The well spacing ranges of Classes I, II, and III wells in the Q gas More > Graphic Abstract

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

  • Open Access

    ARTICLE

    Factors Influencing Fracture Propagation in Collaborative Fracturing of Multiple Horizontal Wells

    Diguang Gong1, Junbin Chen1, Cheng Cheng2, Yuanyuan Kou2,*

    Energy Engineering, Vol.121, No.2, pp. 425-437, 2024, DOI:10.32604/ee.2023.030196

    Abstract Horizontal well-stimulation is the key to unconventional resource exploration and development. The development mode of the well plant helps increase the stimulated reservoir volume. Nevertheless, fracture interference between wells reduces the fracturing effect. Here, a 2D hydro-mechanical coupling model describing hydraulic fracture (HF) propagation is established with the extended finite element method, and the effects of several factors on HF propagation during multiple wells fracturing are analyzed. The results show that with an increase in elastic modulus, horizontal principal stress difference and injection fluid displacement, the total fracture area and the reservoir stimulation efficiency are More >

  • Open Access

    ARTICLE

    Wellbore Cleaning Degree and Hydraulic Extension in Shale Oil Horizontal Wells

    Xin Ai1,2,*, Mian Chen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 661-670, 2024, DOI:10.32604/fdmp.2023.026819

    Abstract

    The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degree of cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentally by focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontal-well hydraulic extension taking into account the influence of the wellbore cleaning degree on the wellbore pressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulating pressure drop, the drilling pump performance and the formation

    More >

  • Open Access

    ARTICLE

    Productivity Prediction Model of Perforated Horizontal Well Based on Permeability Calculation in Near-Well High Permeability Reservoir Area

    Shuangshuang Zhang1,*, Kangliang Guo1, Xinchen Gao1, Haoran Yang1, Jinfeng Zhang2, Xing Han3

    Energy Engineering, Vol.121, No.1, pp. 59-75, 2024, DOI:10.32604/ee.2023.041709

    Abstract To improve the productivity of oil wells, perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation. After the perforation operation, the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius, that is, the formation has different permeability characteristics with the perforation depth as the dividing line. Generally, the permeability is measured by the permeability tester, but this approach has a high workload and limited application. In this paper, according to the reservoir characteristics of perforated horizontal wells, the reservoir… More >

  • Open Access

    ARTICLE

    Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

    Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

    Energy Engineering, Vol.120, No.12, pp. 2933-2949, 2023, DOI:10.32604/ee.2023.041580

    Abstract This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is… More >

  • Open Access

    ARTICLE

    Analysis of Wellbore Flow in Shale Gas Horizontal Wells

    Linjuan Zeng1, Daogang Cai1, Yunhai Zhao1,*, Changqing Ye1, Chengcheng Luo2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2813-2825, 2023, DOI:10.32604/fdmp.2023.026190

    Abstract The flow behavior of shale gas horizontal wells is relatively complex, and this should be regarded as the main reason for which conventional pipe flow models are not suitable to describe the related dynamics. In this study, numerical simulations have been conducted to determine the gas-liquid distribution in these wells. In particular, using the measured flow pressure data related to 97 groups of shale gas wells as a basis, 9 distinct pipe flow models have been assessed, and the models displaying a high calculation accuracy for different water-gas ratio (WGR) ranges have been identified. The More >

  • Open Access

    ARTICLE

    A Cementing Technology for Shale Oil Horizontal Wells

    Yudong Tian1,2, Gonghui Liu1, Yue Qi1,2,*, Jun Li1,3, Yan Xi1,4, Wei Lian1,3, Xiaojie Bai2, Penglin Liu1, Xiaoguang Geng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2837-2845, 2023, DOI:10.32604/fdmp.2023.028805

    Abstract Organic rich dark shale of Q Formation can be found in many areas (e.g., in the North of S Basin). The shale target stratum is easy to hydrate and often undergoes spallation. Therefore, centering the casing in the horizontal section of the irregular borehole is relatively difficult. Similarly, achieving a good cement flushing efficiency under complex borehole conditions is a complex task. Through technologies such as centralizer, efficient preflushing, multi-stage flushing and ductile cement slurry, better performances can be achieved. In this study, it is shown that the cementing rate in the DY2H horizontal section More >

  • Open Access

    ARTICLE

    A Method of Evaluating the Effectiveness of a Hydraulic Oscillator in Horizontal Wells

    Zhen Zhong*, Yadong Li, Yuxuan Zhao, Pengfei Ju

    Sound & Vibration, Vol.57, pp. 15-27, 2023, DOI:10.32604/sv.2023.041954

    Abstract Bent-housing motor is the most widely used directional drilling tool, but it often encounters the problem of high friction when sliding drilling in horizontal wells. In this paper, a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration. A term called dynamic effective tractoring force (DETF) is defined and used to evaluate friction reduction effectiveness. The factors influencing the DETF are studied, and the tool placement optimization problem is investigated. The study finds that the drilling rate of penetration (ROP) can lower the DETF but does not change… More >

Displaying 1-10 on page 1 of 26. Per Page