Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Modeling Method of C/C-ZrC Composites and Prediction of Equivalent Thermal Conductivity Tensor Based on Asymptotic Homogenization

    Junpeng Lyu1, Hai Mei1,2, Liping Zu1, Lisheng Liu1,2,*, Liangliang Chu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 391-410, 2024, DOI:10.32604/cmes.2023.030614

    Abstract This article proposes a modeling method for C/C-ZrC composite materials. According to the superposition of Gaussian random field, the original gray model is obtained, and the threshold segmentation method is used to generate the C-ZrC inclusion model. Finally, the fiber structure is added to construct the microstructure of the three-phase plain weave composite. The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution. Using an algorithm based on asymptotic homogenization and finite element method, the equivalent thermal conductivity prediction of the microstructure finite element model was carried out, and the influence of component volume fraction… More >

  • Open Access

    PROCEEDINGS

    A Second-Order Multiscale Fracture Model for the Brittle Materials with Periodic Distribution of Micro-Cracks

    Zhiqiang Yang1,*, Yipeng Rao2, Yi Sun1, Junzhi Cui2, Meizhen Xiang3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09513

    Abstract An effective fracture model is established for the brittle materials with periodic distribution of micro-cracks using the second-order multiscale asymptotic methods. The main features of the model are: (i) the secondorder strain gradient included in the fracture criterions and (ii) the strain energy and the Griffith criterions for micro-crack extensions established by the multiscale asymptotic expansions. Finally, the accuracy of the presented model is verified by the experiment data and some typical fracture problems. These results illustrate that the second-order fracture model is effective for analyzing the brittle materials with periodic distribution of micro-cracks. More >

  • Open Access

    PROCEEDINGS

    A Spatiotemporal Nonlocal Model for Overall Dynamics of Composites and Its Analytical Solutions

    Linjuan Wang1,*, Jianxiang Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09355

    Abstract The prediction of overall dynamics of composite materials has been an intriguing research topic more than a century, and numerous approaches have been developed for this topic. One of the most successful representatives is the classical micromechanical models which assume that the behavior of a composite is the same as its constituents except for the difference in mechanical properties, e.g., effective moduli. With the development of advanced composite materials in recent years, especially metamaterials, it is found that the classical micromechanical models cannot describe complex dynamic responses of composites such as the dispersion and bandgaps of elastic waves. Thus, some… More >

  • Open Access

    PROCEEDINGS

    Direct FE2 Method For Concurrent Multilevel Modeling of Piezoelectric Structures

    Leilei Chen2,3, Haozhi Li3,4, Lu Meng5, Pan Chen3, Pei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.010584

    Abstract In this paper, a Direct FE2 method is proposed to simulate the electromechanical coupling problem of inhomogeneous materials. The theoretical foundation for the proposed method, downscaling and upscaling principles, is the same as that of the FE2 method. The two-level simulation in the Direct FE2 method may be addressed in an integrative framework where macroscopic and microscopic degrees of freedom (DOFs) are related by multipoint constraints (MPCs) [1]. This critical characteristic permits simple implementation in commercial FE software, eliminating the necessity for recurrent data transfer between two scales [2-4]. The capabilities of Direct FE2 are validated using four numerical examples,… More >

  • Open Access

    PROCEEDINGS

    An Acceleration Scheme for the Phase Field Fatigue Fracture Simulation with a Concurrent Temporal Homogenization Method

    Shuo Yang1, Yongxing Shen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09207

    Abstract Fatigue refers to repeated cyclic loading well below the ultimate failure stress of the structure. It accounts for most mechanical failures, and thus deserves serious consideration in engineering practice. Phase field approach is a powerful tool for fracture simulation, which tracks arbitrary and complicated crack paths without extra criterion. This approach has been widely applied to various cracking problems, such as shell fracture, beam fracture , etc. The phase field approach for fracture has been adapted for fatigue fracture in recent years. Due to the mesh requirement of the phase field approach and the large amount of load steps of… More >

  • Open Access

    PROCEEDINGS

    Multi-physics Simulation of Tar-Rich Coal in-situ Pyrolysis in the Fractured Porous Zone with Multi-Region Homogenization Treatment

    Qianhao Ye1, Mingjie Li1, Jingyuan Hao1, Zibo Huang1, Jinjia Wei1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08826

    Abstract The macroscopic tar-rich coal in-situ pyrolysis (TCISP) multi-physics simulation is conducted, in the fractured porous zone, by coupling heat transfer, fluid flow, and chemical reaction. A novel TCISP pattern of gas injection between fractured zones is proposed, by treating the fractured porous zone as a homogeneous porosity gradient descending region. In this case, nearly 11500 kg of oil can be produced within 6 months from a 10*10*1 m3 area. The influence of the fractured zone and porosity are investigated. Results indicated that gas injection between fractured zones is more conducive to rapid production, compared with the traditional case that gas… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Thermal Properties of Ecological Materials Based on Plaster and Clay

    A. Lkouen1,*, M. Lamrani2, A. Meskini1, A. Khabbazi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2013-2026, 2023, DOI:10.32604/fdmp.2023.026929

    Abstract Most of the energy savings in the building sector come from the choice of the materials used and their microphysical properties. In the present study, through numerical simulations a link is established between the thermal performance of composite materials and their microstructures. First, a two-phase 3D composite structure is modeled, then the RSA (Random Sequential Addition) algorithm and a finite element method (FE) are applied to evaluate the effective thermal conductivity of these composites in the steady-state. In particular, building composites based on gypsum and clay, consolidated with peanut shell additives and/or cork are considered. The numerically determined thermal conductivities… More > Graphic Abstract

    Numerical Analysis of the Thermal Properties of Ecological Materials Based on Plaster and Clay

  • Open Access

    ARTICLE

    Peridynamic Shell Model Based on Micro-Beam Bond

    Guojun Zheng1,2, Zhaomin Yan1, Yang Xia1,2, Ping Hu1,2, Guozhe Shen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1975-1995, 2023, DOI:10.32604/cmes.2022.021415

    Abstract Peridynamics (PD) is a non-local mechanics theory that overcomes the limitations of classical continuum mechanics (CCM) in predicting the initiation and propagation of cracks. However, the calculation efficiency of PD models is generally lower than that of the traditional finite element method (FEM). Structural idealization can greatly improve the calculation efficiency of PD models for complex structures. This study presents a PD shell model based on the micro-beam bond via the homogenization assumption. First, the deformations of each endpoint of the micro-beam bond are calculated through the interpolation method. Second, the micro-potential energy of the axial, torsional, and bending deformations… More >

  • Open Access

    ARTICLE

    Solving Cauchy Issues of Highly Nonlinear Elliptic Equations Using a Meshless Method

    Chih-Wen Chang*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3231-3245, 2022, DOI:10.32604/cmc.2022.024563

    Abstract In this paper, we address 3D inverse Cauchy issues of highly nonlinear elliptic equations in large cuboids by utilizing the new 3D homogenization functions of different orders to adapt all the specified boundary data. We also add the average classification as an approximate solution to the nonlinear operator part, without requiring to cope with nonlinear equations to resolve the weighting coefficients because these constructions are owned many conditions about the true solution. The unknown boundary conditions and the result can be retrieved straightway by coping with a small-scale linear system when the outcome is described by a new 3D homogenization… More >

  • Open Access

    ARTICLE

    Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed Elastic Spherical Particles of Different Sizes

    Yu-Fu Ko1,* , Jiann-Wen Woody Ju2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1305-1328, 2021, DOI:10.32604/cmes.2021.017589

    Abstract Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution, the particle interactions, and utilizing homogenization with ensemble volume average approach. The matrix material, spherical particles with radius a1, and spherical particles with radius a2, are denoted as the 0th phase, the 1st phase, and the 2nd phase, respectively. Particularly, the two inhomogeneity phases are different particle sizes and the same elastic material properties. Improved higher-order (in ratio of spherical particle sizes to the distance between the centers of spherical particles) bounds on effective elastic properties… More >

Displaying 1-10 on page 1 of 42. Per Page