Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    PROCEEDINGS

    Influence of Inhomogeneous Geotechnical Media on the Working Mechanical Properties of Anchors

    Huan Zhu1, Gang Bi2, Yue Hu1, Xin Jiang1, Long Yang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012443

    Abstract Anchoring of geotechnical soil is an important means of stability control for major geotechnical and underground projects. Scientific research on the specific mechanical behavior of the anchor during the work is essential to ensure the quality of the project and construction safety, most of the existing theoretical studies are based on the assumption that the anchor anchoring object is a homogeneous material, while in most cases the medium composition of the rock and soil in the anchoring area is complex and variable, and there are great differences in the physical and mechanical properties, which will… More >

  • Open Access

    PROCEEDINGS

    Simple but Effective Heat Treatment on Hot Isostatic Press Diffusion Bonded Ni60A Hardfacing Layer

    Lei Yu1,2, Yingjie Yan1,2, Hao Dong3,4, Suk-Chun Moon5,*, Zhengyi Jiang5,*, Rui Cao1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011941

    Abstract Ni60A hardfacing alloy, as one of the highest-alloy grades and hardest alloy of Ni-Cr-B-Si alloys, is expected to be used as hardfacing alloy for thrust discs in nuclear main pumps to reduce friction, corrosion and erosion. Since mechanical properties of Ni-Cr-B-Si alloys are very sensitive to their defects and microstructures, heat treatment/remelting methods have been used to eliminate porosity and to modify microstructural heterogeneity. In our previous research, Ni60A hardfacing layer with high micro-hardness and excellent bonding strength has been fabricated onto 0Cr18Ni10Ti austenitic stainless steel using hot isostatic press diffusion bonding technique. However, some… More >

  • Open Access

    ARTICLE

    Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock

    Shijun Zhao1, Qing Zhang2, Yusong Miao1, Weizhao Zhang3, Xinbo Zhao1, Wei Xu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3167-3187, 2024, DOI:10.32604/cmes.2023.045015 - 11 March 2024

    Abstract The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity. To address these complexities, this study employs non-local Peridynamics (PD) theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force. Additionally, modifications to the traditional bond-based PD model are made. By considering the micro-structure of coal-rock materials within a uniform discrete model, heterogeneity characterized by bond random pre-breaking is introduced. This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity, rendering the PD model suitable for analyzing the deformation… More >

  • Open Access

    ARTICLE

    Toward Improved Accuracy in Quasi-Static Elastography Using Deep Learning

    Yue Mei1,2,3, Jianwei Deng1,2, Dongmei Zhao1,2, Changjiang Xiao1,2, Tianhang Wang4, Li Dong5, Xuefeng Zhu1,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 911-935, 2024, DOI:10.32604/cmes.2023.043810 - 30 December 2023

    Abstract Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues. The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing. To address this issue, we propose a deep learning (DL) model based on conditional Generative Adversarial Networks (cGANs) to improve the quality of nonhomogeneous shear modulus reconstruction. To train this model, we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution. Both the simulated and experimental displacement fields are used to validate More >

  • Open Access

    ARTICLE

    Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/Shrinking Sheet with a Heat Source or Sink

    Parakapali Roja1, Shaik Mohammed Ibrahim2, Thummala Sankar Reddy3, Giulio Lorenzini4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 257-274, 2024, DOI:10.32604/fdmp.2023.042283 - 14 December 2023

    Abstract This study examines the behavior of a micropolar nanofluid flowing over a sheet in the presence of a transverse magnetic field and thermal effects. In addition, chemical (first-order homogeneous) reactions are taken into account. A similarity transformation is used to reduce the system of governing coupled non-linear partial differential equations (PDEs), which account for the transport of mass, momentum, angular momentum, energy and species, to a set of non-linear ordinary differential equations (ODEs). The Runge-Kutta method along with shooting method is used to solve them. The impact of several parameters is evaluated. It is shown More >

  • Open Access

    ARTICLE

    A New Distribution Method for Wet Steam Injection Optimization

    Jingjing Gao, Xingkai Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 109-127, 2024, DOI:10.32604/fdmp.2023.030106 - 08 November 2023

    Abstract A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam “stimulation” methods for enhanced oil recovery. The new distribution system consists of a swirler, spiral dividing baffles, and critical flow nozzles. Numerical simulations are used to analyze the flow-field and degree of steam homogeneity obtained with such an approach. The results indicate that a higher inlet pressure leads to better results. Additionally, the internal flow field becomes more stable, and the More >

  • Open Access

    PROCEEDINGS

    Simulation of Wave Propagation Through Inhomogeneous Medium Waveguides Based on Green’s Functions

    Wenzhi Xu1, ZhuoJia Fu1,*, Qiang Xi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.010437

    Abstract Acoustic wave propagation through an inhomogeneous medium may lead to undergo substantial modification. This paper proposed a Green’s functions-based method for the simulation of wave propagation through inhomogeneous medium waveguides. Under ideal conditions, a modified wave equation is derived by variable transformations, in which only the wave speed varies with spatial coordinates. Based on the modified wave equation the acoustic Green’s functions are derived. Then, the localized method of fundamental solution (LMFS) in conjunction with the acoustic Green’s functions is introduced to solve the modified wave equation. In the LMFS, the acoustic Green’s function is More >

  • Open Access

    PROCEEDINGS

    Size Dependent Structures and Properties of Na0.5Bi0.5TiO3-Based Ceramics for Piezoelectric Sensors

    Pan Chen1,2,3, Baojin Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09199

    Abstract Generally, film dielectric materials often exhibit size-dependent structure and electric properties. In this work, we demonstrate a similar behavior in bulk Na0.5Bi0.5TiO3 (NBT)-based polycrystalline ceramics. According to the results from X-ray diffraction, the (Na0.5Bi0.5)0.92Ba0.08Ti0.99Mg0.01O2.99 (NBT8M1.0) ceramic showed a complex structure that consists of rhombohedral, tetragonal and cubic symmetries. We found, when decreasing the thickness of a ϕ 10 mm NBT8M1.0 ceramic from 1230 μm to 230 μm, the ceramic showed increased content of cubic symmetry (CC) from 28% to 56%. Meanwhile, the piezoelectric response (d33) increased from 107 pC/N to 134 pC/N and the depolarization temperature (Td) decreased… More >

  • Open Access

    PROCEEDINGS

    Characterizing Nonhomogeneous Variation in Material Properties of Soft Tissues

    Yue Mei1,*, Stéphane Avril2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09064

    Abstract Characterizing nonhomogeneous variation in material properties of soft tissues has wide application in biomedical engineering and clinical medicine, including but not limited to cancerous disease detection and patient-specific surgical planning of cardiovascular diseases. With the advancement of imaging techniques, we are capable of acquiring not only the geometry of soft tissues in vivo, but also the associated deformation in the physiological state. With the obtained displacement data, the nonhomogeneous material property distribution of soft tissues can be determined by solving inverse problem in elasticity. In this presentation, we will present our recent work on identification More >

  • Open Access

    ARTICLE

    Energy-Efficient Scheduling Based on Task Migration Policy Using DPM for Homogeneous MPSoCs

    Hamayun Khan1,*, Irfan Ud din2, Arshad Ali3, Sami Alshmrany3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 965-981, 2023, DOI:10.32604/cmc.2023.031223 - 22 September 2022

    Abstract Increasing the life span and efficiency of Multiprocessor System on Chip (MPSoC) by reducing power and energy utilization has become a critical chip design challenge for multiprocessor systems. With the advancement of technology, the performance management of central processing unit (CPU) is changing. Power densities and thermal effects are quickly increasing in multi-core embedded technologies due to shrinking of chip size. When energy consumption reaches a threshold that creates a delay in complementary metal oxide semiconductor (CMOS) circuits and reduces the speed by 10%–15% because excessive on-chip temperature shortens the chip’s life cycle. In this… More >

Displaying 1-10 on page 1 of 73. Per Page