Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multifrequency Microwave Imaging for Brain Stroke Detection

    Lulu Wang1,*

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 33-40, 2020, DOI:10.32604/mcb.2019.07165

    Abstract CT and MRI are often used in the diagnosis and monitoring of stroke. However, they are expensive, time-consuming, produce ionizing radiation (CT), and not suitable for continuous monitoring stroke. Microwave imaging (MI) has been extensively investigated for identifying several types of human organs, including breast, brain, lung, liver, and gastric. The authors recently developed a holographic microwave imaging (HMI) algorithm for biological object detection. However, this method has difficulty in providing accurate information on embedded small inclusions. This paper describes the feasibility of the use of a multifrequency HMI algorithm for brain stroke detection. A More >

  • Open Access

    ABSTRACT

    Multifrequency Microwave Imaging for Brain Stroke Detection

    Lulu Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 125-125, 2019, DOI:10.32604/mcb.2019.07101

    Abstract Early diagnosis of stroke with timely treatment could reduce adult permanent disability significantly [1]. Conventional medical imaging tools such as X-ray, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have been widely used for diagnosis of brain disease. However, each of these methods has some limitations. X-ray imaging produces harmful radiation to the human body and challenging to identify early-stage abnormal tissue due to the relatively small dielectric proprieties contrast between the healthy tissue and abnormal tissue at X-ray frequencies [2]. PET provides useful information about soft tissues, but it… More >

Displaying 1-10 on page 1 of 2. Per Page