Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Intrusion Detection Using Federated Learning for Computing

    R. S. Aashmi1,*, T. Jaya2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1295-1308, 2023, DOI:10.32604/csse.2023.027216 - 03 November 2022

    Abstract The integration of clusters, grids, clouds, edges and other computing platforms result in contemporary technology of jungle computing. This novel technique has the aptitude to tackle high performance computation systems and it manages the usage of all computing platforms at a time. Federated learning is a collaborative machine learning approach without centralized training data. The proposed system effectively detects the intrusion attack without human intervention and subsequently detects anomalous deviations in device communication behavior, potentially caused by malicious adversaries and it can emerge with new and unknown attacks. The main objective is to learn overall… More >

  • Open Access

    ARTICLE

    A New Quasi-Unsymmetric Sparse Linear Systems Solver for Meshless Local Petrov-Galerkin Method (MLPG)

    Weiran Yuan1, Pu Chen1,2, Kaishin Liu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.2, pp. 115-134, 2007, DOI:10.3970/cmes.2007.017.115

    Abstract In this paper we propose a direct solution method for the quasi-unsymmetric sparse matrix (QUSM) arising in the Meshless Local Petrov-Galerkin method (MLPG). QUSM, which is conventionally treated as a general unsymmetric matrix, is unsymmetric in its numerical values, but nearly symmetric in its nonzero distribution of upper and lower triangular portions. MLPG employs trial and test functions in different functional spaces in the local domain weak form of governing equations. Consequently the stiffness matrix of the resultant linear system is a QUSM. The new solver for QUSM conducts a two-level unrolling technique for LDU factorization More >

Displaying 1-10 on page 1 of 2. Per Page