Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Syntax-Aware Hierarchical Attention Networks for Code Vulnerability Detection

    Yongbo Jiang, Shengnan Huang, Tao Feng, Baofeng Duan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.069423 - 10 November 2025

    Abstract In the context of modern software development characterized by increasing complexity and compressed development cycles, traditional static vulnerability detection methods face prominent challenges including high false positive rates and missed detections of complex logic due to their over-reliance on rule templates. This paper proposes a Syntax-Aware Hierarchical Attention Network (SAHAN) model, which achieves high-precision vulnerability detection through grammar-rule-driven multi-granularity code slicing and hierarchical semantic fusion mechanisms. The SAHAN model first generates Syntax Independent Units (SIUs), which slices the code based on Abstract Syntax Tree (AST) and predefined grammar rules, retaining vulnerability-sensitive contexts. Following this, through More >

  • Open Access

    ARTICLE

    Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network

    Zhen-Yu Chen1, Feng-Chi Liu2, Xin Wang3, Cheng-Hsiung Lee1, Ching-Sheng Lin1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4287-4300, 2025, DOI:10.32604/cmc.2025.061661 - 06 March 2025

    Abstract In the domain of knowledge graph embedding, conventional approaches typically transform entities and relations into continuous vector spaces. However, parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations. In particular, resource-intensive embeddings often lead to increased computational costs, and may limit scalability and adaptability in practical environments, such as in low-resource settings or real-world applications. This paper explores an approach to knowledge graph representation learning that leverages small, reserved entities and relation sets for parameter-efficient embedding. We introduce a hierarchical attention network designed to refine More >

  • Open Access

    ARTICLE

    Telecontext-Enhanced Recursive Interactive Attention Fusion Method for Line-Level Defect Prediction

    Haitao He1, Bingjian Yan1, Ke Xu1,*, Lu Yu1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2077-2108, 2025, DOI:10.32604/cmc.2024.058779 - 17 February 2025

    Abstract Software defect prediction aims to use measurement data of code and historical defects to predict potential problems, optimize testing resources and defect management. However, current methods face challenges: (1) Coarse-grained file level detection cannot accurately locate specific defects. (2) Fine-grained line-level defect prediction methods rely solely on local information of a single line of code, failing to deeply analyze the semantic context of the code line and ignoring the heuristic impact of line-level context on the code line, making it difficult to capture the interaction between global and local information. Therefore, this paper proposes a… More >

  • Open Access

    ARTICLE

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

    Kelan Ren, Facheng Yan, Honghua Chen, Wen Jiang, Bin Wei, Mingshu Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 789-807, 2024, DOI:10.32604/cmc.2024.055624 - 15 October 2024

    Abstract The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns. Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures. This paper focuses on effectively mining and utilizing sentiment-semantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network (SentiHAN) for cross-target stance detection. SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various… More > Graphic Abstract

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

  • Open Access

    ARTICLE

    A Hierarchical Two-Level Feature Fusion Approach for SMS Spam Filtering

    Hussein Alaa Al-Kabbi1,2, Mohammad-Reza Feizi-Derakhshi1,*, Saeed Pashazadeh3

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 665-682, 2024, DOI:10.32604/iasc.2024.050452 - 06 September 2024

    Abstract SMS spam poses a significant challenge to maintaining user privacy and security. Recently, spammers have employed fraudulent writing styles to bypass spam detection systems. This paper introduces a novel two-level detection system that utilizes deep learning techniques for effective spam identification to address the challenge of sophisticated SMS spam. The system comprises five steps, beginning with the preprocessing of SMS data. RoBERTa word embedding is then applied to convert text into a numerical format for deep learning analysis. Feature extraction is performed using a Convolutional Neural Network (CNN) for word-level analysis and a Bidirectional Long… More >

Displaying 1-10 on page 1 of 5. Per Page