Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy

    Dandan Xu1, Haijian Shao1,*, Xing Deng1,2, Xia Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 567-597, 2022, DOI:10.32604/cmes.2022.019245 - 14 March 2022

    Abstract As wind and photovoltaic energy become more prevalent, the optimization of power systems is becoming increasingly crucial. The current state of research in renewable generation and power forecasting technology, such as wind and photovoltaic power (PV), is described in this paper, with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting. The methods for forecasting wind power and PV production. The physical model, statistical learning method, and machine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production. More >

  • Open Access

    ARTICLE

    Deep Learning Approach with Optimizatized Hidden-Layers Topology for Short-Term Wind Power Forecasting

    Xing Deng1,2, Haijian Shao1,2,*

    Energy Engineering, Vol.117, No.5, pp. 279-287, 2020, DOI:10.32604/EE.2020.011619 - 07 September 2020

    Abstract Recurrent neural networks (RNNs) as one of the representative deep learning methods, has restricted its generalization ability because of its indigestion hidden-layer information presentation. In order to properly handle of hidden-layer information, directly reduce the risk of over-fitting caused by too many neuron nodes, as well as realize the goal of streamlining the number of hidden layer neurons, and then improve the generalization ability of RNNs, the hidden-layer information of RNNs is precisely analyzed by using the unsupervised clustering methods, such as Kmeans, Kmeans++ and Iterative self-organizing data analysis (Isodata), to divide the similarity of More >

Displaying 1-10 on page 1 of 2. Per Page