Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open Access

    ARTICLE

    Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems

    Qianyao Zhu1, Kaizhou Gao1,*, Wuze Huang1, Zhenfang Ma1, Adam Slowik2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3573-3589, 2024, DOI:10.32604/cmc.2024.055244 - 12 September 2024

    Abstract The flow shop scheduling problem is important for the manufacturing industry. Effective flow shop scheduling can bring great benefits to the industry. However, there are few types of research on Distributed Hybrid Flow Shop Problems (DHFSP) by learning assisted meta-heuristics. This work addresses a DHFSP with minimizing the maximum completion time (Makespan). First, a mathematical model is developed for the concerned DHFSP. Second, four Q-learning-assisted meta-heuristics, e.g., genetic algorithm (GA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), and differential evolution (DE), are proposed. According to the nature of DHFSP, six local search operations… More >

  • Open Access

    ARTICLE

    Cyberbullying Sexism Harassment Identification by Metaheurustics-Tuned eXtreme Gradient Boosting

    Milos Dobrojevic1,4, Luka Jovanovic1, Lepa Babic3, Miroslav Cajic5, Tamara Zivkovic6, Miodrag Zivkovic2, Suresh Muthusamy7, Milos Antonijevic2, Nebojsa Bacanin2,4,8,9,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4997-5027, 2024, DOI:10.32604/cmc.2024.054459 - 12 September 2024

    Abstract Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones, computers, or tablets. It can occur through various channels, such as social media, text messages, online forums, or gaming platforms. Cyberbullying involves using technology to intentionally harm, harass, or intimidate others and may take different forms, including exclusion, doxing, impersonation, harassment, and cyberstalking. Unfortunately, due to the rapid growth of malicious internet users, this social phenomenon is becoming more frequent, and there is a huge need to address this issue. Therefore, the main goal of the research… More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    ARTICLE

    Urban Electric Vehicle Charging Station Placement Optimization with Graylag Goose Optimization Voting Classifier

    Amel Ali Alhussan1, Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,*, Marwa M. Eid2,3, Abdelhameed Ibrahim4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1163-1177, 2024, DOI:10.32604/cmc.2024.049001 - 18 July 2024

    Abstract To reduce the negative effects that conventional modes of transportation have on the environment, researchers are working to increase the use of electric vehicles. The demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of recharge. The establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue. Nevertheless, the powering of these terminals presents challenges because of the high energy requirements, which may influence the quality of service. Modelling the maximum hourly capacity of each station based on… More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863 - 20 June 2024

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    Intelligent Solution System for Cloud Security Based on Equity Distribution: Model and Algorithms

    Sarah Mustafa Eljack1,*, Mahdi Jemmali2,3,4, Mohsen Denden6,7, Mutasim Al Sadig1, Abdullah M. Algashami1, Sadok Turki5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1461-1479, 2024, DOI:10.32604/cmc.2023.040919 - 30 January 2024

    Abstract In the cloud environment, ensuring a high level of data security is in high demand. Data planning storage optimization is part of the whole security process in the cloud environment. It enables data security by avoiding the risk of data loss and data overlapping. The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient. In our work, we propose a data scheduling model for the cloud environment. The model is made up of three parts that together help dispatch user data flow to the appropriate cloud VMs.… More >

  • Open Access

    ARTICLE

    SCChOA: Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection

    Shanshan Wang1,2,3, Quan Yuan1, Weiwei Tan1, Tengfei Yang1, Liang Zeng1,2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3057-3075, 2023, DOI:10.32604/cmc.2023.044807 - 26 December 2023

    Abstract Feature Selection (FS) is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy. However, due to the high dimensionality and complexity of the dataset, most optimization algorithms for feature selection suffer from a balance issue during the search process. Therefore, the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm (SCChOA) to address the feature selection problem. In this approach, firstly, a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm (SCA) and the Chimp Optimization Algorithm (ChOA), enabling a more effective search… More >

  • Open Access

    ARTICLE

    Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3127-3144, 2023, DOI:10.32604/csse.2023.038959 - 09 November 2023

    Abstract Computational intelligence (CI) is a group of nature-simulated computational models and processes for addressing difficult real-life problems. The CI is useful in the UAV domain as it produces efficient, precise, and rapid solutions. Besides, unmanned aerial vehicles (UAV) developed a hot research topic in the smart city environment. Despite the benefits of UAVs, security remains a major challenging issue. In addition, deep learning (DL) enabled image classification is useful for several applications such as land cover classification, smart buildings, etc. This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification (MDLS-UAVIC) model… More >

  • Open Access

    ARTICLE

    Ensemble of Population-Based Metaheuristic Algorithms

    Hao Li, Jun Tang*, Qingtao Pan, Jianjun Zhan, Songyang Lao

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2835-2859, 2023, DOI:10.32604/cmc.2023.038670 - 08 October 2023

    Abstract No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the real and virtual population to balance the problem of exploration and exploitation at the population level and uses an elite strategy to communicate among virtual populations. The… More >

Displaying 1-10 on page 1 of 153. Per Page