Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems

    Elif Varol Altay, Osman Altay, Yusuf Özçevik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1039-1094, 2024, DOI:10.32604/cmes.2023.029404 - 30 December 2023

    Abstract Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as industry, automotive, construction, machinery, and interdisciplinary research. However, there are established optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization (TSO), equilibrium optimizer (EO), grey wolf optimizer… More >

  • Open Access

    ARTICLE

    Research of Electric Cable Path Planning Based on Heuristic Optimization Algorithm in Mixed-Land Scenario

    Tianfeng Xu1, Tao Wang1, Chengming Ye2, Jing Zhang1, Peng Xi1, Yunhui Chen2, Gengwu Zhang3,*

    Energy Engineering, Vol.120, No.11, pp. 2629-2650, 2023, DOI:10.32604/ee.2023.027537 - 31 October 2023

    Abstract In order to improve the reliability of power supply, the sophisticated design of the structure of electric cable network has become an important issue for modern urban distribution networks. In this paper, an electric cable path planning model based on heuristic optimization algorithm considering mixed-land scenario is proposed. Firstly, based on different land samples, the kernel density estimation (KDE) and the analytic hierarchy process (AHP) are used to estimate the construction cost of each unit grid, in order to construct the objective function of comprehensive investment for electric cable loop network. Then, the ant colony More >

  • Open Access

    ARTICLE

    An Optimized Feature Selection and Hyperparameter Tuning Framework for Automated Heart Disease Diagnosis

    Saleh Ateeq Almutairi*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2599-2624, 2023, DOI:10.32604/csse.2023.041609 - 28 July 2023

    Abstract Heart disease is a primary cause of death worldwide and is notoriously difficult to cure without a proper diagnosis. Hence, machine learning (ML) can reduce and better understand symptoms associated with heart disease. This study aims to develop a framework for the automatic and accurate classification of heart disease utilizing machine learning algorithms, grid search (GS), and the Aquila optimization algorithm. In the proposed approach, feature selection is used to identify characteristics of heart disease by using a method for dimensionality reduction. First, feature selection is accomplished with the help of the Aquila algorithm. Then,… More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization with Deep Learning Enabled Smart Grid Stability Prediction

    Afrah Al-Bossly*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6395-6408, 2023, DOI:10.32604/cmc.2023.028433 - 29 April 2023

    Abstract Due to the drastic increase in global population as well as economy, electricity demand becomes considerably high. The recently developed smart grid (SG) technology has the ability to minimize power loss at the time of power distribution. Machine learning (ML) and deep learning (DL) models can be effectually developed for the design of SG stability techniques. This article introduces a new Social Spider Optimization with Deep Learning Enabled Statistical Analysis for Smart Grid Stability (SSODLSA-SGS) prediction model. Primarily, class imbalance data handling process is performed using Synthetic minority oversampling technique (SMOTE) technique. The SSODLSA-SGS model… More >

  • Open Access

    ARTICLE

    Quantum-Inspired Equilibrium Optimizer for Linear Antenna Array

    Binwen Zhu1, Qifang Luo1,3,*, Yongquan Zhou1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 385-413, 2023, DOI:10.32604/cmes.2023.026097 - 23 April 2023

    Abstract With the rapid development of communication technology, the problem of antenna array optimization plays a crucial role. Among many types of antennas, line antenna arrays (LAA) are the most commonly applied, but the side lobe level (SLL) reduction is still a challenging problem. In the radiation process of the linear antenna array, the high side lobe level will interfere with the intensity of the antenna target radiation direction. Many conventional methods are ineffective in obtaining the maximum side lobe level in synthesis, and this paper proposed a quantum equilibrium optimizer (QEO) algorithm for line antenna… More >

  • Open Access

    ARTICLE

    Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model

    Yuxin Chen1, Weixun Yong1, Chuanqi Li2, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2507-2526, 2023, DOI:10.32604/cmes.2023.025714 - 09 March 2023

    Abstract After the excavation of the roadway, the original stress balance is destroyed, resulting in the redistribution of stress and the formation of an excavation damaged zone (EDZ) around the roadway. The thickness of EDZ is the key basis for roadway stability discrimination and support structure design, and it is of great engineering significance to accurately predict the thickness of EDZ. Considering the advantages of machine learning (ML) in dealing with high-dimensional, nonlinear problems, a hybrid prediction model based on the random forest (RF) algorithm is developed in this paper. The model used the dragonfly algorithm… More >

  • Open Access

    ARTICLE

    A Novel Meta-Heuristic Optimization Algorithm in White Blood Cells Classification

    Khaled A. Fathy, Humam K. Yaseen*, Mohammad T. Abou-Kreisha, Kamal A. ElDahshan

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1527-1545, 2023, DOI:10.32604/cmc.2023.036322 - 06 February 2023

    Abstract Some human diseases are recognized through of each type of White Blood Cell (WBC) count, so detecting and classifying each type is important for human healthcare. The main aim of this paper is to propose a computer-aided WBCs utility analysis tool designed, developed, and evaluated to classify WBCs into five types namely neutrophils, eosinophils, lymphocytes, monocytes, and basophils. Using a computer-artificial model reduces resource and time consumption. Various pre-trained deep learning models have been used to extract features, including AlexNet, Visual Geometry Group (VGG), Residual Network (ResNet), which belong to different taxonomy types of deep… More >

  • Open Access

    ARTICLE

    Estimation of Weibull Distribution Parameters for Wind Speed Characteristics Using Neural Network Algorithm

    Musaed Alrashidi*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1073-1088, 2023, DOI:10.32604/cmc.2023.036170 - 06 February 2023

    Abstract Harvesting the power coming from the wind provides a green and environmentally friendly approach to producing electricity. To facilitate the ongoing advancement in wind energy applications, deep knowledge about wind regime behavior is essential. Wind speed is typically characterized by a statistical distribution, and the two-parameters Weibull distribution has shown its ability to represent wind speeds worldwide. Estimation of Weibull parameters, namely scale and shape parameters, is vital to describe the observed wind speeds data accurately. Yet, it is still a challenging task. Several numerical estimation approaches have been used by researchers to obtain c and… More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization of Time Series Models for Predicting Networks Traffic

    Reem Alkanhel1, El-Sayed M. El-kenawy2,3, D. L. Elsheweikh4, Abdelaziz A. Abdelhamid5,6, Abdelhameed Ibrahim7, Doaa Sami Khafaga8,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 427-442, 2023, DOI:10.32604/cmc.2023.032885 - 06 February 2023

    Abstract Traffic prediction of wireless networks attracted many researchers and practitioners during the past decades. However, wireless traffic frequently exhibits strong nonlinearities and complicated patterns, which makes it challenging to be predicted accurately. Many of the existing approaches for predicting wireless network traffic are unable to produce accurate predictions because they lack the ability to describe the dynamic spatial-temporal correlations of wireless network traffic data. In this paper, we proposed a novel meta-heuristic optimization approach based on fitness grey wolf and dipper throated optimization algorithms for boosting the prediction accuracy of traffic volume. The proposed algorithm More >

  • Open Access

    ARTICLE

    Al-Biruni Earth Radius Optimization for COVID-19 Forecasting

    El-Sayed M. El-kenawy1, Abdelaziz A. Abdelhamid2,3, Abdelhameed Ibrahim4, Mostafa Abotaleb5, Tatiana Makarovskikh5, Amal H. Alharbi6,*, Doaa Sami Khafaga6

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 883-896, 2023, DOI:10.32604/csse.2023.034697 - 20 January 2023

    Abstract Several instances of pneumonia with no clear etiology were recorded in Wuhan, China, on December 31, 2019. The world health organization (WHO) called it COVID-19 that stands for “Coronavirus Disease 2019,” which is the second version of the previously known severe acute respiratory syndrome (SARS) Coronavirus and identified in short as (SARSCoV-2). There have been regular restrictions to avoid the infection spread in all countries, including Saudi Arabia. The prediction of new cases of infections is crucial for authorities to get ready for early handling of the virus spread. Methodology: Analysis and forecasting of epidemic patterns… More >

Displaying 1-10 on page 1 of 26. Per Page