Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (304)
  • Open Access

    ARTICLE

    Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids

    Aijia Ding, Tingzhang Liu*

    Energy Engineering, Vol.121, No.12, pp. 3735-3759, 2024, DOI:10.32604/ee.2024.054687 - 22 November 2024

    Abstract The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources. This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative (FOPID) controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration. To improve load frequency control, the proposed controllers are applied to a two-area interconnected microgrid system incorporating diverse energy sources, such as wind turbines, photovoltaic cells, diesel generators, and various storage technologies. A novel meta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers. The efficacy… More >

  • Open Access

    REVIEW

    A Critical Review of Active Distribution Network Reconfiguration: Concepts, Development, and Perspectives

    Bo Yang1, Rui Zhang1, Jie Zhang2, Xianlong Cheng2, Jiale Li3, Yimin Zhou1, Yuanweiji Hu1, Bin He1, Gongshuai Zhang4, Xiuping Du4, Si Ji5, Yiyan Sang6, Zhengxun Guo7,8,*

    Energy Engineering, Vol.121, No.12, pp. 3487-3547, 2024, DOI:10.32604/ee.2024.054662 - 22 November 2024

    Abstract In recent years, the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex. Consequently, a large number of active distribution network reconfiguration techniques have emerged to reduce system losses, improve system safety, and enhance power quality via switching switches to change the system topology while ensuring the radial structure of the network. While scholars have previously reviewed these methods, they all have obvious shortcomings, such as a lack of systematic integration of methods, vague classification, lack of constructive suggestions for future study, etc. Therefore, this… More >

  • Open Access

    ARTICLE

    Using the Novel Wolverine Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1, Belal Batiha2, Omar Alsayyed3, Frank Werner4,*, Zeinab Monrazeri5, Mohammad Dehghani5,*, Kei Eguchi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2253-2323, 2024, DOI:10.32604/cmes.2024.055171 - 31 October 2024

    Abstract This paper introduces the Wolverine Optimization Algorithm (WoOA), a biomimetic method inspired by the foraging behaviors of wolverines in their natural habitats. WoOA innovatively integrates two primary strategies: scavenging and hunting, mirroring the wolverine’s adeptness in locating carrion and pursuing live prey. The algorithm’s uniqueness lies in its faithful simulation of these dual strategies, which are mathematically structured to optimize various types of problems effectively. The effectiveness of WoOA is rigorously evaluated using the Congress on Evolutionary Computation (CEC) 2017 test suite across dimensions of 10, 30, 50, and 100. The results showcase WoOA’s robust… More >

  • Open Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024

    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open Access

    ARTICLE

    Ensemble Filter-Wrapper Text Feature Selection Methods for Text Classification

    Oluwaseun Peter Ige1,2, Keng Hoon Gan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1847-1865, 2024, DOI:10.32604/cmes.2024.053373 - 27 September 2024

    Abstract Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality. This involves eliminating irrelevant, redundant, and noisy features to streamline the classification process. Various methods, from single feature selection techniques to ensemble filter-wrapper methods, have been used in the literature. Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents. Feature selection is inherently multi-objective, balancing the enhancement of feature relevance, accuracy, and the reduction of redundant features. This… More >

  • Open Access

    ARTICLE

    Far and Near Optimization: A New Simple and Effective Metaphor-Less Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1,2, Khalid Kaabneh3, Omar Alssayed4, Kei Eguchi5,*, Zeinab Monrazeri6, Mohammad Dehghani6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1725-1808, 2024, DOI:10.32604/cmes.2024.053236 - 27 September 2024

    Abstract In this article, a novel metaheuristic technique named Far and Near Optimization (FNO) is introduced, offering versatile applications across various scientific domains for optimization tasks. The core concept behind FNO lies in integrating global and local search methodologies to update the algorithm population within the problem-solving space based on moving each member to the farthest and nearest member to itself. The paper delineates the theory of FNO, presenting a mathematical model in two phases: (i) exploration based on the simulation of the movement of a population member towards the farthest member from itself and (ii)… More >

  • Open Access

    ARTICLE

    Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems

    Qianyao Zhu1, Kaizhou Gao1,*, Wuze Huang1, Zhenfang Ma1, Adam Slowik2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3573-3589, 2024, DOI:10.32604/cmc.2024.055244 - 12 September 2024

    Abstract The flow shop scheduling problem is important for the manufacturing industry. Effective flow shop scheduling can bring great benefits to the industry. However, there are few types of research on Distributed Hybrid Flow Shop Problems (DHFSP) by learning assisted meta-heuristics. This work addresses a DHFSP with minimizing the maximum completion time (Makespan). First, a mathematical model is developed for the concerned DHFSP. Second, four Q-learning-assisted meta-heuristics, e.g., genetic algorithm (GA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), and differential evolution (DE), are proposed. According to the nature of DHFSP, six local search operations… More >

  • Open Access

    ARTICLE

    Metaheuristic-Driven Two-Stage Ensemble Deep Learning for Lung/Colon Cancer Classification

    Pouyan Razmjouei1, Elaheh Moharamkhani2, Mohamad Hasanvand3, Maryam Daneshfar4, Mohammad Shokouhifar5,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3855-3880, 2024, DOI:10.32604/cmc.2024.054460 - 12 September 2024

    Abstract This study investigates the application of deep learning, ensemble learning, metaheuristic optimization, and image processing techniques for detecting lung and colon cancers, aiming to enhance treatment efficacy and improve survival rates. We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer classification. The diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks (CNNs) in feature extraction and model constructions, and utilizing the power of various Machine Learning (ML) algorithms for final classification. Specifically, we consider different scenarios consisting of two-class colon… More >

  • Open Access

    ARTICLE

    Cyberbullying Sexism Harassment Identification by Metaheurustics-Tuned eXtreme Gradient Boosting

    Milos Dobrojevic1,4, Luka Jovanovic1, Lepa Babic3, Miroslav Cajic5, Tamara Zivkovic6, Miodrag Zivkovic2, Suresh Muthusamy7, Milos Antonijevic2, Nebojsa Bacanin2,4,8,9,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4997-5027, 2024, DOI:10.32604/cmc.2024.054459 - 12 September 2024

    Abstract Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones, computers, or tablets. It can occur through various channels, such as social media, text messages, online forums, or gaming platforms. Cyberbullying involves using technology to intentionally harm, harass, or intimidate others and may take different forms, including exclusion, doxing, impersonation, harassment, and cyberstalking. Unfortunately, due to the rapid growth of malicious internet users, this social phenomenon is becoming more frequent, and there is a huge need to address this issue. Therefore, the main goal of the research… More >

  • Open Access

    ARTICLE

    Chase, Pounce, and Escape Optimization Algorithm

    Adel Sabry Eesa*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 697-723, 2024, DOI:10.32604/iasc.2024.053192 - 06 September 2024

    Abstract While many metaheuristic optimization algorithms strive to address optimization challenges, they often grapple with the delicate balance between exploration and exploitation, leading to issues such as premature convergence, sensitivity to parameter settings, and difficulty in maintaining population diversity. In response to these challenges, this study introduces the Chase, Pounce, and Escape (CPE) algorithm, drawing inspiration from predator-prey dynamics. Unlike traditional optimization approaches, the CPE algorithm divides the population into two groups, each independently exploring the search space to efficiently navigate complex problem domains and avoid local optima. By incorporating a unique search mechanism that integrates More >

Displaying 1-10 on page 1 of 304. Per Page