Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Monolayer MoS2/n-Si Heterostructure Schottky Solar Cell

    Omar Salih Omar*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1979-1988, 2022, DOI:10.32604/jrm.2022.018765 - 07 March 2022

    Abstract Monolayer MoS2 has a promising optoelectronics property, with a bandgap in the visible range; the material is a potential candidate for solar cell applications. In this work, we grew MoS2 monolayers using a low-pressure chemical vapor deposition approach. To produce uniform wafer-scale MoS2 monolayer films, precursors molybdenum dioxide (MoO2) and sulfur (S) are utilized. Atomic force microscopy was used to quantify the thickness of the monolayers, and the result was validated by Raman spectroscopy. Transmission electron microscopy (TEM) was used to confirm the crystalline quality of the monolayers, and photoluminescence spectroscopy was used to evaluate their optical More >

  • Open Access

    ARTICLE

    Mechanical Properties of All MoS2 Monolayer Heterostructures: Crack Propagation and Existing Notch Study

    Reza Khademi Zahedi1, Naif Alajlan2, Hooman Khademi Zahedi3, Timon Rabczuk2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4635-4655, 2022, DOI:10.32604/cmc.2022.017682 - 11 October 2021

    Abstract The outstanding thermal, optical, electrical and mechanical properties of molybdenum disolphide (MoS2) heterostructures make them exceptional candidates for an extensive area of applications. Nevertheless, despite considerable technological and academic interest, there is presently a few information regarding the mechanical properties of these novel two-dimensional (2D) materials in the presence of the defects. In this manuscript, we performed extensive molecular dynamics simulations on pre-cracked and pre-notched all-molybdenum disolphide (MoS2) heterostructure systems using ReaxFF force field. Therefore, we study the influence of several central-crack lengths and notch diameters on the mechanical response of 2H phase, 1T phase and… More >

  • Open Access

    ARTICLE

    Physical Properties of SiC Nanostructure for Optoelectronics Applications

    Mayyadah H. Mohsin1, Najwan H. Numan2, Evan T. Salim1,*, Makram A. Fakhri2,*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1519-1530, 2021, DOI:10.32604/jrm.2021.015465 - 23 April 2021

    Abstract A SiC nanofilms have been deposited and investigated on quartz and silicon substrates using pulsed laser deposition technique with the 300 pulses of Nd: YAG laser at two different laser wavelengths of 1064 nm and 532 nm. The structural, morphological, and optical properties of the deposited nanostructure SiC were prepared and characterized as a function of the wavelengths of the used laser. The structural result shows four different pecks at (111), (200), (220), and (311) planes related to Nano SiC. The transmission result presents that the optical energy gap value for the SiC nanostructure is More > Graphic Abstract

    Physical Properties of SiC Nanostructure for Optoelectronics Applications

Displaying 1-10 on page 1 of 3. Per Page