Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    REVIEW

    Heterogeneous Network Embedding: A Survey

    Sufen Zhao1,2, Rong Peng1,*, Po Hu2, Liansheng Tan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 83-130, 2023, DOI:10.32604/cmes.2023.024781 - 23 April 2023

    Abstract Real-world complex networks are inherently heterogeneous; they have different types of nodes, attributes, and relationships. In recent years, various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks (HINs) into low-dimensional embeddings; this task is called heterogeneous network embedding (HNE). Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification, recommender systems, and information retrieval. Here, we provide a comprehensive survey of key advancements in the area of HNE. First, we define an encoder-decoder-based HNE model taxonomy. Then, we systematically More > Graphic Abstract

    Heterogeneous Network Embedding: A Survey

Displaying 1-10 on page 1 of 1. Per Page