Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    PROCEEDINGS

    An Energy-Based Local-Nonlocal Coupling Scheme for Heterogeneous Material Brittle Fractures: Analysis and Simulations

    Shaoqi Zheng1, Zihao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012200

    Abstract This study proposes a novel method for predicting the microcrack propagation in composites based on coupling the local and non-local micromechanics. The special feature of this method is that it can take full advantages of both the continuum micromechanics as a local model and peridynamic micromechanics as a non-local model to achieve composite fracture simulation with a higher level of accuracy and efficiency. Based on the energy equivalence, we first establish the equivalent continuum micromechanics model with equivalent stiffness operators through peridynamic micromechanics model. These two models are then coupled into a closed equation system, More >

  • Open Access

    ARTICLE

    Development of a Three-Dimensional Multiscale Octree SBFEM for Viscoelastic Problems of Heterogeneous Materials

    Xu Xu1, Xiaoteng Wang1, Haitian Yang1, Zhenjun Yang2, Yiqian He1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1831-1861, 2024, DOI:10.32604/cmes.2024.048199 - 20 May 2024

    Abstract The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms (DOFs). A basic framework of the Multiscale Scaled Boundary Finite Element Method (MsSBFEM) was presented in our previous works, but those works only addressed two-dimensional problems. In order to solve more realistic problems, a three-dimensional MsSBFEM is further developed in this article. In the proposed method, the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales, the three-dimensional image-based analysis can be conveniently… More >

  • Open Access

    ARTICLE

    Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock

    Shijun Zhao1, Qing Zhang2, Yusong Miao1, Weizhao Zhang3, Xinbo Zhao1, Wei Xu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3167-3187, 2024, DOI:10.32604/cmes.2023.045015 - 11 March 2024

    Abstract The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity. To address these complexities, this study employs non-local Peridynamics (PD) theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force. Additionally, modifications to the traditional bond-based PD model are made. By considering the micro-structure of coal-rock materials within a uniform discrete model, heterogeneity characterized by bond random pre-breaking is introduced. This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity, rendering the PD model suitable for analyzing the deformation… More >

  • Open Access

    ARTICLE

    Displacement Field Variable Modeling Method for Heterogeneous Materials in Wind Power Blade Core Plates

    Ying He, Yongshuang Wen*, Xuemei Huang, Leian Zhang, Rujun Song, Chang Li

    Energy Engineering, Vol.120, No.2, pp. 445-459, 2023, DOI:10.32604/ee.2022.022223 - 28 November 2022

    Abstract In order to study the mechanical properties of the heterogeneous core plate of the wind turbine blade, a modeling method of the core plate based on displacement field variables is proposed. Firstly, the wind turbine blade core plate was modeled according to the theory of modeling heterogeneous material characteristics. Secondly, the three-point bending finite element model of the wind turbine blade core plate was solved by the display dynamic equation to obtain the deformation pattern and force-deformation relationship of the core plate. Finally, the three-point bending static test was conducted to compare with the finite More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Modeling of Heterogeneous Materials

    Lisheng Liu1,*, Xihua Chu2, Xinhua Yang3, Jianzhong Chen1, Qun Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 1-3, 2023, DOI:10.32604/cmes.2022.025081 - 24 August 2022

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    On Ductile Damage Modelling of Heterogeneous Material Using Second-Order Homogenization Approach

    Jurica Sorić*, Tomislav Lesičar, Zdenko Tonković

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 915-934, 2021, DOI:10.32604/cmes.2021.014142 - 19 February 2021

    Abstract The paper deals with the numerical modelling of ductile damage responses in heterogeneous materials using the classical second-order homogenization approach. The scale transition methodology in the multiscale framework is described. The structure at the macrolevel is discretized by the triangular C1 finite elements obeying nonlocal continuum theory, while the discretization of microstructural volume element at the microscale is conducted by means of the mixed type quadrilateral finite element with the nonlocal equivalent plastic strain as an additional nodal variable. The ductile damage evolution at the microlevel is modelled by using the gradient enhanced elastoplasticity. The macrolevel… More >

  • Open Access

    ARTICLE

    Multi-Scale Analysis of Fretting Fatigue in Heterogeneous Materials Using Computational Homogenization

    Dimitra Papagianni1, 2, Magd Abdel Wahab3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 79-97, 2020, DOI:10.32604/cmc.2020.07988

    Abstract This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis (FEA). The heterogeneous material for the specimens consists of a single hole model (25% void/cell, 16% void/cell and 10% void/cell) and a four-hole model (25% void/cell). Using a representative volume element (RVE), we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue. Next, the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous More >

  • Open Access

    ABSTRACT

    Damage Modeling of Heterogeneous Materials Using Multiscale Approach

    Jurica Sorić*, Tomislav Lesičar, Filip Putar, Zdenko Tonković

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 181-183, 2019, DOI:10.32604/icces.2019.04554

    Abstract The paper deals with the novel multiscale approaches for modelling of both quasi-brittle and ductile damage responses of heterogeneous materials. The damage is induced at the microstructural level and, after the homogenization procedure, it is included in the constitutive stiffness of the material point at macrolevel. The derived algorithms are implemented into the finite element software ABAQUS. The new two-scale transition procedures have been verified on the standard benchmark examples. More >

  • Open Access

    ARTICLE

    A Multiscale Method for Damage Analysis of Quasi-Brittle Heterogeneous Materials

    Filip Putar1, Jurica Sorić1,*, Tomislav Lesičar1, Zdenko Tonković1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 123-156, 2019, DOI:10.32604/cmes.2019.06562

    Abstract A novel multiscale algorithm based on the higher-order continuum at both micro- and macrostructural level is proposed for the consideration of the quasi-brittle damage response of heterogeneous materials. Herein, the microlevel damage is modelled by the degradation of the homogenized stress and tangent stiffness tensors, which are then upscaled to govern the localization at the macrolevel. The C1 continuity finite element employing a modified case of Mindlin’s form II strain energy density is derived for the softening analysis. To the authors’ knowledge, the finite element discretization based on the strain gradient theory is applied for the… More >

  • Open Access

    ARTICLE

    Elasto-Plastic MLPG Method for Micromechanical Modeling of Heterogeneous Materials

    Isa Ahmadi1, M.M. Aghdam2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.1, pp. 21-48, 2015, DOI:10.3970/cmes.2015.108.021

    Abstract In this study, a truly meshless method based on the meshless local Petrov-Galerkin method is formulated for analysis of the elastic-plastic behavior of heterogeneous solid materials. The incremental theory of plasticity is employed for modeling the nonlinearity of the material behavior due to plastic strains. The well-known Prandtl-Reuss flow rule of plasticity is used as the constitutive equation of the material. In the presented method, the computational cost is reduced due to elimination of the domain integration from the formulation. As a practical example, the presented elastic-plastic meshless formulation is employed for micromechanical analysis of More >

Displaying 1-10 on page 1 of 18. Per Page